
UPDATE PACKAGE

UPD4303-192

for

PASCAL REFERENCE GUIDE, DOC4303-191

June 1983

This Update Package, UPD4303-192, i s Update 1 for the December 1982
Edition of the Pascal Reference Guide, DOC4303-191. This package
contains 264 pages. A l i s t of effect ive pages appears on the next
page.

Changes made to the t ex t since the l a s t p r in t ing a re iden t i f i ed by
ve r t i ca l bars in the margin. Change bars with numbers ident i fy new
Pascal features of Software Release 19.2. Change bars without numbers
identify documentation correct ions and c l a r i f i c a t i o n s .

Copyright © 1983 by Prime Computer, Incorporated
Technical Publications Department
500 Old Connecticut Path
Framingham, MA 01701

The information contained on these updated pages i s subject t o change
without notice and should not be construed as a commitment by Prime
Computer Corporation. Prime Computer Corporation assumes no
respons ib i l i ty for any e r ro r s t ha t may appear in t h i s package.

PRIME and PRIMDS are regis tered trademarks of Prime Computer, Inc.
PRIMENET, RINGNET, Prime INFORMATION and THE PROGRAMMER'S COMPANION are
trademarks of Prime Computer, Inc.

(Pages with changes, enclosed with t h i s package, are underlined.)

Effective Pages for the Pascal Reference Guide a t Software Release
19.2 .

Pages Pages

i i t o v 8-1 to 8-2
v i to ix 8-3
x t o x i i i 8-4 to 8-16

9-1 to 9-8
9-9 to 9-9A

1-
1-
1-

2-
2-
2-
2-
2-
2-
2-
2-
2-

3-
3-
3-

4-
4-
4-
4-

-1
-3
-4

-1
-3
-4
-7
-8
-11
-12
-14
-15

-1
-2
-3

-1
-5
-6
-9

to

to

to

to

to

1-

1-

2-

2-

2-

-2

-6

-2

•6

-10

! to 2-13
;
i to 2-17

to 3-

to 4-

to 4-

-8

-4

-8

9-10 to 9-11
9-12
9-13 to 9-17
9-18 to 9-18A
9-19 to 9-22

10-1
10-2 to 10-3
10-4
10-5 to 10-5A
10-6 to 10-10
10-11 to 10-12
10-13 t o 10-23
10-24

11-1
11-2 to 11-4
11-5

A-l to A-3
4-10 A-4 t o A-4A
4-11 A-5
4-12

B-l
5-1 to 5-3 B-2 to B-7
5-4 B-8 t o B-9
5-5 to 5-15

D-l
6-1 to 6-2 D-2
6-3 to 6-8 D-3 to D-8
6-9 D-9
6-10 to 6-13
6-14 to 6-14L X-l to X-16
6-15 to 6-16
6-17 to 6-17A
6-18 to 6-33
7-1
7-2 to 7-4
7-5 to 7-6
7-7 to 7-7A
7-8

Pascal Reference Guide
DOC4303-191

Second Edition

by

A. Paul Gioto

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 19.1 (Rev. 19.1).

Prime Computer, Inc.
500 Old Connecticut Path

Framingham, Massachusetts 01701

COPYRIGHT INFORMATION

The informat ion i n t h i s document i s sub jec t t o change wi thou t n o t i c e
and should no t be cons t rued a s a commitment by Prime Computer
Corpora t ion . Prime Computer Corporat ion assumes no r e s p o n s i b i l i t y for
any e r r o r s t h a t may appear i n t h i s document.

The sof tware de sc r ibed i n t h i s document i s fu rn i shed under a l i c e n s e
and may be used or copied only i n accordance wi th t he te rms of such
l i c e n s e .

Copyright © 1982 by
Prime Computer, Incorpora ted

500 Old Connect icut Path
Framingham, Massachuset ts 01701

PRIME and PRIMOS a r e r e g i s t e r e d trademarks of Prime Computer, I n c .

PRIMENET, RINGNET, PRIME INFORMATION, PRIMACS, MIDASPLUS, and THE
PROGRAMMER'S COMPANION a r e trademarks of Prime Computer, I n c .

HCW TO ORDER TECHNICAL DOCUMENTS

U.S. Customers

Software D i s t r i b u t i o n
Prime Computer, Inc .
1 New York Ave.
Framingham, MA 01701
(617) 879-2960 X2053, 2054

Customers Outs ide U.S.

Prime Employees

Communications S e r v i c e s
MS 15-13 , Prime Park
Natick, MA 01760
(617) 655-8000 X4837

PRIME INFORMATION

Contact your l o c a l Prime
s u b s i d i a r y or d i s t r i b u t o r .

Contact your Prime
INFORMATION d e a l e r .

l i

HUNTING HISTORY PASCAL REFERENCE GUIDE

E d i t i o n

First Edition
Update 1
Update 2
Second Edition

Date

October 1980
December 1980
July 1982
December 1982

Number

IDR4303
PTU2600-080
PTU2600-086
DOC4303-191

Software Release

17.6
18.1
19.0
19.1

This edition is a complete revision of IDR4303. It
incorporates update material up to and including software
release 19.1, corrects all known errors, and has been revised
for clarity.

Changes made to the text since the last printing have been
indicated with change bars in the margin. Change bars with
numbers indicate technical changes. Those without numbers
indicate rewrites for clarification or additional information.
Appendixes A and D are new.

SUGGESTION BOX

All correspondence on suggested changes
directed to:

to this document should be

A. Paul Cioto
Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, Massachusetts 01701

i n

Contents

ABOUT THIS BOOK x i

PART I - OVERVIEW

1 INTRODUCTION TO PRIME PASCAL

The Pascal Language 1-2

Prime Pascal 1-2
Contents of This Book 1-2
Related Documents 1-4
Interface to Other Languages 1-6

PART II - COMPILING, LOADING,
AND EXECUTING PROGRAMS

2 USING THE PASCAL COMPILER

Introduction 2-1
Invoking the Compiler 2-2
Compiler Error Messages 2-2
Filename Conventions 2-4
Compiler Options 2-6
Compiler Option Abbreviations 2-13
Compiler Switches 2-16

3 LOADING AND EXECUTING PROGRAMS

Loading Programs 3-1
Executing Programs 3-7

PART III - PRIME PASCAL LANGUAGE REFERENCE

4 PASCAL LANGUAGE ELEMENTS

Definitions 4-2
Pascal Character Set 4-4
Keywords 4-7
Identifiers 4-7

Numeric Constants
Character-strings
Declarations and Statements
Line Format
Comments, Blanks, and Ends of Lines

5 PASCAL PROGRAM STRUCTURE

Program Heading
The Block
Declaration Part
LABEL
CONSTANT
TYPE
VARIABLE
PROCEDURE and FUNCTION

Executable Part
A Program Example

6 DATA TYPES

Scalar Data Types
Standard Scalar Data Types
INTEGER
LONGINTEGER
REAL
LONGREAL
BOOLEAN
CHAR

User-defined Scalar Data Types
Enumerated
Subrange

Structured Data Types
The ARRAY Type
The RECORD Type
The SET Type
The FILE Type
TEXT

The Pointer Type

7 EXPRESSIONS

Operands
Operators
Arithmetic Operators
Relational Operators
SET Operators
BOOLEAN Operators
Integer Operators

Operator Precedence

4-8
4-11
4-11
4-11
4-11

5-1
5-3
5-4
5-4
5-6
5-6
5-7
5-9
5-9
5-11

6-1
6-2
6-3
6-4
6-6
6-7
6-8
6-8
6-10
6-10
6-12
6-14
6-14
6-20
6-25
6-27
6-29
6-31

7-1
7-2
7-2
7-3
7-5
7-6
7-7
7-7

VI

8 STATEMENTS

Summary of Statements 8-1
Assignment Statement 8-2
Procedure Statement 8-3
Compound Statement 8-4
Empty Statement 8-5
Control Statements 8-5
Repetitive Statements 8-6
REPEAT 8-6
WHILE 8-7
FOR 8-8

Conditional Statements 8-10
IF 8-10
CASE 8-11

Unconditional Statement 8-14
GOTO 8-14

WITH Statement 8-16

9 PROCEDURES AND FUNCTIONS

Parameters 9-2
Procedures 9-9
Func t ions 9-12
Forward Procedures and Func t ions 9-14
Ex te rna l Procedures and Func t ions 9-15
Recurs ive Procedures and Func t ions 9-19

10 INPUT AND OUTPUT

I n p u t t i n g and Outpu t t ing Data
a t t h e Terminal 10-2

I n p u t t i n g and Ou tpu t t i ng Data
wi th PRIMOS F i l e s 10-6

Crea t ing and Using Input
Data F i l e s 10-6

The RESET Procedure 10-7
Crea t i ng and Using Output

Data F i l e s 10-11
The REWRITE Procedure 10-11

I/O Procedures and Func t ions 10-14
Input F i l e - h a n d l i n g Procedures 10-15

GET 10-15
READ 10-15
READLN 10-17

Output F i l e - h a n d l i n g Procedures 10-18
PUT 10-18
WRITE 10-18
WRITELN 10-22

BOOLEAN Funct ions 10-22
EOF 10-22
EOLN 10-23

VI l

Auxiliary Procedures 10-23
PAGE 10-23
CLOSE 10-24

11 STANDARD FUNCTIONS

Arithmetic Functions 11-1
ABS 11-1
SQR 11-1
SIN 11-1
COS 11-1
EXP 11-2
LN 11-2
SQRT 11-2
ARCTAN 11-2

Transfer Functions 11-2
TRUNC 11-2
ROUND 11-2

Ordinal Functions 11-3
ORD 11-3
CHR 11-3
SUCC 11-3
PRED 11-4

BOOLEAN Functions 11-5
ODD 11-5
EOF 11-5
EOLN 11-5

APPENDIXES

A SUMMARY OF PRIME EXTENSIONS
AND RESTRICTIONS

Prime Extensions A-l

Prime Restrictions A-5

B DATA FORMATS

Overview B-l
INTEGER Type Data B-2
LONG INTEGER Type Data B-2
Subrange Type Data B-3
REAL Type Data B-3
LONGREAL Type Data B-3
CHAR Type Data B-4
BOOLEAN Type Data B-4
Enumerated Type Data B-4
ARRAY Type Data B-5
RECORD Type Data B-5
SET Type Data B-5
FILE Type Data B-6
Pointer Type Data B-8

VI11

C ASCII CHARACTER SET

Prime Usage C-l
Special Characters C-2
Keyboard Input C-2

D INTERFACING PASCAL TO OTHER LANGUAGES

Overview D-l
Interfacing INTEGER, BOOLEAN,

and Enumerated D-3
Interfacing LONGINTEGER D-4
Interfacing REAL D-4
Interfacing LONGREAL D-5
Interfacing CHAR and ARRAY

OF CHAR D-5
Interfacing Pointer D-6
Interfacing SET D-7
Interfacing RECORD D-7

INDEX X-l

IX

IMRODUCriON TO PRIME PASCAL

Part I I — Compiling. Loading, and Executing Programs

• Chapter 2 provides information on the use of Prime's Pascal
compiler, including compiler options.

• Chapter 3 provides information on loading and executing programs
with Prime's SEG u t i l i t y .

Part I I I — Pascal Language Reference

• Chapter 4 provides brief descr ipt ions of Pascal language
elements and of terms used throughout Part I I I .

• Chapter 5 l i s t s the fundamental elements of the Pascal program
s t ruc tu re .

• Chapter 6 describes the data types ava i lab le in Pascal,
including two Prime extension data types ca l led LCNGINTEGER and
LCNGREAL.

• Chapter 7 describes the use of Pascal expressions.

• Chapter 8 describes the use of executable Pascal statements.

• Chapter 9 describes the use of procedures and functions,
including external procedures and functions, which are declared
with Prime's EXTERN a t t r i b u t e .

• Chapter 10 offers a de ta i led discussion of how t o input and
output data in Prime Pascal.

• Chapter 11 l i s t s standard Pascal functions.

Appendixes

• Appendix A summarizes Prime extensions and r e s t r i c t i o n s to
standard Pascal . I t a lso references the chapter in which each
extension or r e s t r i c t i o n i s discussed.

• Appendix B i l l u s t r a t e s how Prime Pascal data types a re
represented in s torage.

• Appendix C l i s t s the ASCII character s e t , which Prime Pascal
uses.

• Appendix D l i s t s guidelines for in ter fac ing Pascal t o some of
Prime's other high-level languages.

1-3 Second Edition

DOC4303-191

Error Messages

Pascal compiler error messages, which were designed to be
self-explanatory, appear on your terminal a t compile time, and in the
l i s t i n g f i l e if one i s created. Therefore, the messages are not l i s t e d
in t h i s book.

RELATED DOCUMENTS

In addit ion to the Pascal Reference Guide, you w i l l most l ike ly need
other documents to help you take fu l l advantage of Prime's powerful
u t i l i t i e s , which are separately priced products. These documents are
l i s t e d below.

Prime User ' s Guide

Complete ins t ruc t ions for creat ing, leading, and executing programs in
Prime Pascal or in most Prime languages, plus extensive addi t ional
information on Prime system u t i l i t i e s for programmers, a re found in the
Prime User 's Guide. The Prime User 's Guide and the Pascal Reference
Guide are both essent ia l to the Pascal programmer.

The Prime User ' s Guide also contains a complete guide to a l l Prime
documentation.

Draft Proposal "X3J9/81-Q93" Programming Language Pascal

The def in i t ive reference for standard Pascal i s The Draft Proposal
"X3J9/81-093" Programming Language Pascal. Every i n s t a l l a t i o n t h a t
uses Pascal extensively should have a copy of t h i s proposed standard,
which may be obtained from American National Standards I n s t i t u t e , 1430
Broadway, New York, NY 10018.

New User' s Guide to EDITOR and RUNOFF

Prime's EDITOR i s an in te rac t ive l ine-or iented t ex t - ed i t i ng u t i l i t y .
I t i s used t o enter and modify text in the computer. New programs t ha t
do not rely on cards or tapes can be input to the system a t a terminal
using EDITOR.

The New User' s Guide t o EDITOR and RUNOFF contains a complete descr ip­
t ion of the EDITOR, and describes RUNOFF, Prime's text-formatt ing
u t i l i t y . I t a lso provides a basic introduction to the Prime system for
those with l i t t l e or no computer experience.

Second Edition 1-4

PASCAL COMPILER

The ca re t (or arrow) t h a t appears jus t above the error message points
t o the actual error on the l ine of code. The following i s an example
of an error message:

OK, PASCAL TEST. PASCAL
[PASCAL Rev. 19.1]

14 END {main program}

ERROR 31 SEVERITY 3 BEGINNING ON LINE 14
Missing dot a t program end.

When compilation i s complete and a l l the error messages have been
l i s t e d on the terminal , the compiler t e l l s you how many e r ro rs were
encountered and the maximum sever i ty . For example: -,Q ,

0013 ERRORS (PASCAL-REV. 19.1)
MAXIMUM SEVERITY IS 3

The significance of the sever i ty code i s :

Severity Description

1 Warning

2 Error that the compiler has attempted to
correct

3 Uncorrected error (prevents optimization,
code generation, and therefore successful
compilation)

4 Error that immediately halts compilation

A severity 1 or 2 error will not prevent execution of your program, but
the output may be unpredictable.

Error Messages Involving %INCLUDE Files

A %INCLUDE file is a Prime extension. It is an external file that is
compiled with the main program after the %INCLUDE statement. The
%INCLUDE statement is followed by the name of the file to be included.
The format is:

%INCLUDE 'filename';

%INCLUDE files can hold any legal Pascal code — declarations as well
as executable statements. The files could, for example, contain long
lists of variable declarations. (For more information on %INCLUDE
files, see Chapter 5.)

2-3 Second Edition

DOC4303-191

If you compile a program tha t inse r t s a %INCLUDE f i l e , and there are
compile-time e r ro rs in tha t f i l e , a special type of error message
format i s pr inted a t the terminal:

<line-number> line-of-code

ERROR xxx SEVERITY y BEGINNING ON LINE line-number IN FILE 'fi lename'
explanation

line-number

18.3

line-of-code

xxx

Y

•filename'

explanation

The number of the l ine in the %INCLUDE f i l e where
the error occurred. (Lines of code in %INCLUDE
f i l e s are numbered separately, and the numbers are
enclosed in angle brackets in the l i s t i n g f i l e .)

The actual erroneous l ine of code in the % INCLUDE
f i l e .

The error code number.

Severity code number.

The name of the %INCLUDE f i l e .

Description of the error and possible remedies.

The care t points to the erroneous l ine of code.

Here i s an example of a %INCLUDE f i l e error message:

<23> VAR a : in teger ;

ERROR 2 SEVERITY 3 BEGINNING ON LINE 23 IN FILE ' t e s t - 1 '
This item in a var iable defini t ion l i s t i s
already defined in t h i s block.

The compiler adds the number of errors from the %INCLUDE f i l e t o the
number of e r rors in the main program, and gives the t o t a l number of
e r rors a t the end of compilation.

FILENAME CONVENTIONS

When you compile a program with the PASCAL command, and there are no
severi ty 3 or 4 e r ro r s , the compiler creates an object (binary) f i l e .

18.0 I t a lso creates a source l i s t i n g f i l e i f the -LISTING option i s
specified on the command l i n e . In order for you and the compiler to
identify and compile the source f i l e and crea te the object and l i s t i n g
f i l e s , the "suffix" conventions, which are described below, should be
used to name these f i l e s on Rev. 18 (or higher) systems.

Second Edition 2-4

PASCAL COMPILER

Table 2-1

Options Commonly Used and Not Commonly Used
(Defaults are underlined.)

Options Commonly Used

-BINARY [argument]

-DEBUG and -NODEBUG

-ERRTTY and -NOERRTTY

-LISTING [argument]

-MAP and -NO_MAP

-OPTIMIZE, -OPT1, -OPT3,
and -NOOPTIMIZE

-RANGE and -NORANGE

-UPCASE

-XREF and -NOXREF

Options Not Commonly Used

-BIG and -NOBIG

-64V and -321

-EXPLIST and -NOEXPLIST

-EXTERNAL and -NOEXTERNAL

-FRN and -NOFRN

-INPUT pathname

-OFFSET and -NOOFFSET

-PRODUCTION and -NOPRODUCTION

-SILENT and -NOSILENT

-SOURCE pathname

-STANDARD and -NOSTANDARD

-STATISTICS and -NOSTATISTICS

2-7 Second Edition

DOC4303-191

^ -BIG and -NOBIG

-BIG and -NOBIG determine the type of code generated for references to
ARRAY or REGORD formal var iable parameters in a subprogram.

With -BIG, an ARRAY or RECORD formal var iable parameter can become
associated with any ARRAY or RECORD, even if the ARRAY or REGORD
crosses a segment boundary.

With -NOBIG, an ARRAY or RECORD formal var iable parameter can be
associated only with an ARRAY or REGORD t h a t does not cross a segment
boundary.

See ARRAY or RECORD Type Variable Parameters in Chapter 9 for d e t a i l s .

^ -BINARY [argument]

The -BINARY option generates an object (binary) f i l e . If t h i s option
i s not given, -BINARY YES wi l l be assumed. The argument may be:

pathname Object code w i l l be wri t ten to the f i l e pathname.

YES Object code wi l l be wri t ten to the f i l e named
program.BIN, or B_j?rogram, in the u s e r ' s UFD, where
program i s the name of the source f i l e . (This i s the
defaul t .)

NO No object f i l e w i l l be created. Specified when only a
syntax check or l i s t i n g i s desired.

^ -̂ EBUG and -NODEBUG

The -DEBUG option generates code for Prime's source leve l debugger.
With -DEBUG, the object f i l e i s modified so tha t i t w i l l run under the

, 8 2 debugger. Execution time increases, and the code generated w i l l not be
optimized.

-NODEBUG, the default , causes no debugger code to be generated.

See the Source Level Debugger Guide for information about debugging
programs.

^ -ERRTTY and -NOERRTTY

18.0 The -ERRTTY option p r in t s error messages a t the u s e r ' s terminal.
-NOERRTTY suppresses t h i s function.

Second Edition 2-8

PASCAL COMPILER

• -OPTIMIZE, -OPTlr -OPT3, and -N30PTIMIZE | 19.1

These options control the optimization phase of the compiler.

-OPTIMIZE, the defaul t , w i l l cause the object code t o be optimized.
Optimized code runs more ef f ic ient ly than nonoptimized code, but takes
somewhat longer to compile.

The -OPT1 option optimizes l e s s code and generates l e s s e f f i c i en t code
than -OPTIMIZE, but compilation time i s fas te r than -OPTIMIZE.

19.1
The -0PT3 option optimizes more code and generates more e f f ic ien t code
than -OPTIMIZE, but compilation time i s slower than -OPTIMIZE.

When -NOOPTIMIZE i s invoked, optimization does not occur. Execution
time i s slowest, and compile time i s f a s t e s t .

^ -PRODUCTION and -NOPRODUCTION

-PRODUCTION produces a l t e rna t ive opt ion-control l ing code for the
debugger.

-PRODUCTION i s similar to DEBUG, except t ha t the code generated wi l l
not permit inser t ion of statement breakpoints. Execution time i s not
affected.

-NOPRODUCTION wi l l cause no production-type code to be generated.

• -RANGE and -NORANGE

-RANGE checks for out-of-bounds values of array subscr ipts and
character substring indexes. Error-checking code i s inser ted in to the
object f i l e . If an array subscript or character substr ing index takes
on a value outside the range specified when the referenced data item
was declared, a runtime error wi l l be generated. Range checking
decreases the efficiency of the generated code.

With -NORANGE, out-of-bounds values w i l l not be detected. The program
wi l l be more vulnerable to e r ro rs , but w i l l execute more quickly.

2-11 Second Edition

DOC4303-191

^ -SILENT and -NQSILENT

-SILENT suppresses severi ty 1 error messages. Severity 1 error
messages wi l l not be printed a t the terminal and w i l l be omitted from
any l i s t i n g f i l e .

-NOSILENT causes severi ty 1 error messages to be re ta ined.

• -SOURCE pathname

The -SOURCE option, which i s ident ical to the -INHJT option, i s
obsolete and not useful. -SOURCE designates the source f i l e pathname
to be compiled:

PASCAL -SOURCE pathname

I t i s not useful because i t produces the same r e su l t s a s :

PASCAL pathname

pathname must not be designated more than once on the command l i n e .

^ -STANDARD and -NQSTANDARD

The -STANDARD option generates a severi ty 1 error message when your
code's syntax i s non-ANSI standard Pascal. -NOSTANDARD does not cause
a severi ty 1 error to be generated.

^ -STATISTICS and -NOSTATISTICS

The -STATISTICS option l i s t s compilation s t a t i s t i c s a t the terminal
after each phase of compilation. For each phase the l i s t contains:

DISK Number of reads and wri tes during the phase, excluding
those needed to obtain the source f i l e

SECONDS Elapsed rea l time

SPACE Internal buffer space used for symbol t ab le , in 16K byte
units

PAGING Disk I /O time used

CPU CPU t ime used i n seconds, followed by t h e clock t ime
when t h e phase was completed

-NOSTATISTICS causes no s t a t i s t i c s t o be p r i n t e d .

Second Edition 2-12

PASCAL COMPILER

^ -UPCASE

The -UPCASE option causes the compiler to map lowercase var iables to
uppercase. With -UPCASE, the compiler does not dis t inguish between 18.2
lowercase var iables and uppercase var iab les , except within character
s t r i ngs .

^ -XREF and -NOXREF

The -XREF option appends a cross-reference to the source l i s t i n g . A
cross-reference l i s t s , for every var iable , the number of every l ine on
which the var iab le was referenced.

-NOXREF causes no cross-reference l i s t i n g t o be generated.

^ -64V and -321

These determine the addressing mode to be used in the object code.
-64V i s a segmented v i r t u a l addressing mode for 16-bi t machines. -321
i s a segmented v i r t u a l mode, which takes maximum advantage of the
32-bi t a rch i tec ture of Prime's more advanced models (P450 and up) .

COMPILER OPTION ABBREVIATIONS

Most compiler options have abbreviations t ha t a re accepted by the
compiler. For example, instead of typing -LISTING on the command l i n e ,
you could simply type -L. A l i s t of Prime's recommended abbreviat ions,
along with a summary of options in s t r a igh t (nonpaired) alphabetical
order, i s given in Table 2-2.

2-13 Second Edition

DOC4303-191

Table 2-2

Summary of Compiler Options and Abbreviations
(Defaults are underlined.)

18.2

18.0

18.3

18.2

18.0

18.3

Option

-BIG

-BINARY

-DEBUG

-ERRTTY

-EXPLIST

-EXTERNAL

-FRN

-INHJT

-LISTING

-MAP

-NOBIG

-NODEBUG

-NOERRTTY

-NOFRN

-NO_MAP

-NOOFPSET

-NOOPTIMIZE

Abbrevia t ion

-BIG

-B

-DE

-ERRT

-EXP

-EXT

-FRN

- I

-L

-MA

-NOB

-NOD

-NOERRT

-NOFRN

-NOM

-NOOF

-NOOP

Significance

Generate boundary-spanning code

Create object f i l e

Generate debugger code

Print error messages a t terminal

Generate an expanded source
l i s t i n g

Generate external procedure
def ini t ions

Generate f loat ing-point round
ins t ruc t ions

Designate source f i l e

Create source l i s t i n g

Print l i s t i n g f i l e with map

Don't generate boundary-spanning
code

Don't generate code for debugger

Don't p r in t error messages a t
terminal

Don't generate FRN ins t ruc t ion

Don't include a map in l i s t i n g
f i l e

Don't append an offse t map t o
source l i s t i n g

Don't optimize object code

Second Edition 2-14

PASCAL LANGUAGE ELEMENTS

Table 4-1
Pascal Punctuation Symbols

Symbol

+

-

*

/

<

>

[]

•

r

m •

?

*s

0

<>

Description

Addition
Identity
Set union

Subtraction
Sign-inversion
Set difference

Multiplication
Set intersection

Division (real)

Equal to
Set equality
Type identifier and type separator
Constant identifier and constant
separator

Less than

Greater than

Subscript list or set constructor
delimiters

Decimal point
Record selector
Program terminator

Parameter or identifier separator

Variable name and type separator
Label and statement separator

Statement separator
Record field separator
Declaration separator

File or pointer variable indicator

Parameter list, identifier list,
or expression delimiters

Not equal to
Set inequality

4-5 Second Edition

DOC4303-191

Table 4-1 (continued)
Pascal Punctuation Symbols

18.3

Symbol

<=

>=

: =

« •

{}

/* V

(* *)

1

&

1

Description

Less than or equal to
Set inclusion ("is contained in")

Greater than or equal to
Set inclusion ("contains")

Assignment Operator

Subrange Specifier

Comment delimiters

Comment delimiters (Prime extension)

Comment delimiters

Character-string delimiter
(apostrophe)

Bit Integer AND operator (Prime extension)

Bit Integer OR operator (Prime extension)

Second Edition 4-6

PASCAL LANGUAGE ELEMENTS

Table 4-3
Standard Identifiers

Constants

FALSE

Types

INTEGER
BOOLEAN

Files

INPUT

Directives

FOEWARD

Functions

ABS
ARCTAN
CHR
COS
EOF
EOLN

Procedures

CLOSE*
DISPOSE
GET
NEW

TRUE MAXINT

LONGINTEGER* REAL
CHAR

OUTPUT

EXTERN*

EXP
LN
ODD
ORD
PRED
ROUND

PAGE
PUT
READ
READLN

TEXT

SIN
SQR
SQRT
SUCC
TRUNC

RESET
REWRITE
WRITE
WRITELN

* Prime extension identifiers

LONGREAL* 119.1

4-9 Second Edition

19.1

DOC4303-191

I There are two ways of expressing real and longreal numbers:

1. In decimal notation, the number is expressed by an optional
sign, a whole number part, a decimal point, and a fractional
part. There must be at least one digit on each side of the
decimal point.

2. In scientific notation, the number is represented by a value,
followed by the letter E or D, which is followed by an

19.1 exponent. The letter E is used if the number is REAL. The
letter D is used if the number is LONGREAL. The value consists
of an optional sign, one or more digits, and an optional
decimal point and fractional part. The exponent must be an

19.11 integer with an optional sign. The letter E or D is read as
"times 10 to the power of". This is a convenient way to
represent very large or very small numbers.

No comma may appear in a number. Examples:

Valid Integer/Longinteger Invalid Integer

23 -32,768 (No comma allowed)

-100

+40000 (longinteger)

Valid Real/Longreal Number Invalid Real Number

-0 .1 .1 (Must be a d i g i t to
the l e f t of the decimal

1E6 (1000000) point)

5E-8 (0.00000005) 1. (Must be a d i g i t to the
r igh t of the decimal point)

-87.35E+15 (-87350000000000000)

-7.0E-6 (-0.000007) -8.0E-6.3 (Only whole number
exponents allowed)

2.1D01 (longreal)
19#1 l,234Df20 (No comma allowed)

1.234567 (longreal)

Second Edition 4-10

6
Data Types

Every constant, variable, function, or expression must have a data
type. The data type determines the set of values a variable may assume
or a function or an expression may generate. The data type also
determines which operations may be performed on the values and how
these values are represented in storage.

This chapter summarizes the data types available in Prime Pascal
— standard Pascal data types as well as Prime extensions. There are
two Prime extension data types, LONGINTEGER and LCNGREAL. Each of
these data types is described later in this chapter.

Figure 6-1 illustrates all of the data types in Prime Pascal. The
internal representations of data types are illustrated in Appendix B.
Appendix D offers guidelines for interfacing Pascal data types with
those of other languages. For more information about Pascal data
types, consult a commercially available text.

SCALAR D&TA TYPES

Scalar data types are the fundamental data types in Pascal. All other
data types must be built from scalar data types.

Each scalar data type has a group of distinct values, called constants,
which have a defined linear ordering. Thus, each scalar type is
ordered. Any two of these constants can be compared by asking if one
is less than, equal to, or greater than the other. The total number of
constants in a type is called the cardinality of that type.

6-1 Second Edition

19.1

DOC4303-191

DATA TYPES

19.1 LONGINTEGER * LONGBEAL *

19.1 |
The Hierarchy of Data Types in Prime Pascal

*Prime extensions are flagged with an asterisk,

Figure 6-1

Scalar data types are divided in to two c lasses : standard sca lar data
types and user-defined scalar data types. The standard scalar types
are the predefined, b u i l t - i n data types provided by Pascal . The
user-defined scalar types are data types t ha t you crea te and define in
a program.

19.1

Standard Scalar Data Types

There are four standard scalar types — INTEGER, REAL, BOCLEAN, and
CHAR — plus two Prime extension scalar types called LCNGINTEGER and
LONGREAL.

Second Edition 6-2

DATA TYPES

The fo l lowing program compares a l l of t h e p r i n t a b l e c h a r a c t e r s (decimal
160-255) i n P r i m e ' s c h a r a c t e r s e t , us ing r e l a t i o n a l o p e r a t i o n s :

PROGRAM K a r a c t e r ;
VAR

I : INTEGER;
BEGIN

FOR I := 160 TO 255 DO
BEGIN

WRITE(CHR(I));
IF ((CHR(I) >= 'A') AND (CHR(I) <= ' Z ')) THEN

This i s a c a p i t a l l e t t e r ') WRITELNC
ELSE
IF ((CHR(I)

WRITELNC
ELSE
IF ((CHR(I)

WRITELNC
ELSE

WRITELNC
END

>= ' a ') AND (CHR(I) <= ' z ')) THEN
This i s a small l e t t e r ')

>= ' 0 ') AND (CHR(I) <= ' 9 ')) THEN
This i s a p r i n t a b l e number')

This i s punc tua t ion or o the r c h a r a c t e r ')

END.

Caution

Prime's character se t i s represented by the decimal numbers 128
to 255. You should not use the CHR function on in tegers l e s s
than 128 or greater than 255. Any such attempt w i l l produce
unpredictable r e s u l t s .

To indica te a constant of the CHAR type, place an apostrophe (a s ingle
quote) on each side of the character . To indica te an apostrophe, wr i te
i t twice. Examples:

• 7 1

I . •
i

''•' {Single quote}

1 ' {Blank is considered a printable character.}

Note

A constant of the CHAR type is always a single character.
Constructs such as '123' or 'STRING1 are not constants of this
type but are constants of a more complex type called ARRAY OF
CHAR or "string", which is described later in this chapter.

6-9 Second Edition

DOC4303-191

As was explained e a r l i e r , each character corresponds to i t s own
in terna l integer, which i s cal led the ordinal number of the character .
Using the standard function ORD — the opposite of CHR — you can get a
cha rac t e r ' s ordinal number. For example:

ORD('A') yields 193 {Octal value 301}

ORD('a') yields 225 {Octal value 341}

ORD('l') yields 177 {Octal value 261}

There are two more standard functions pa r t i cu la r ly useful for
processing character data — FRED (predecessor function) and SUCC
(successor function). Given a value, FRED produces the next lesser
value and SUCC gives the next greater value. For example:

FRED('E') yields 'D' {The predecessor of 'E ' i s 'D'}

SUCCCE') yields ' F ' {The successor of 'E' i s ' F ' }

PRED(8) yields 7 {The predecessor of 8 i s 7}

SUCC(8) yie lds 9 {The successor of 8 i s 9}

PREDfORDCG')) yie lds 198 {The predecessor of G's ordinal
value i s 198}

SUCC(ORD('F')) yields 199 {The successor of F's ordinal
value is 199}

Functions are described in de ta i l in Chapter 1 1 .

The r e la t iona l operators =, <>, <, >, <=, and >= can be used with a l l
character constants . For more information, see Chapter 7 .

User-defined Scalar Data Types

There are two user-defined scalar types — enumerated and subrange.

The Enumerated Types: An enumerated type defines an ordered se t of
values by l i s t i n g these values.

To create an enumerated type, use the following type de f in i t ion :

TYPE type- ident i f ie r = (iden t i f i e r -1 , ident i f ie r -2 [, i d e n t i f i e r - 3] . . .) ;

Second Edition 6-10

DATA TYPES

Array of C h a r a c t e r s : A l i n e of t e x t can be r e p r e s e n t e d a s an a r r a y of
c h a r a c t e r s . This p a r t i c u l a r a r r a y i s c a l l e d ARRAY OF CHAR or " s t r i n g " .

A t y p i c a l VAR d e c l a r a t i o n of an ARRAY OF CHAR would b e :

VAR
A : ARRAY[1..60] OF CHAR;

The i d e n t i f i e r "A" i s an a r r a y with 60 c h a r a c t e r e lements . A[l] i s t h e
f i r s t c h a r a c t e r , and A[60] i s t h e l a s t . Any c h a r a c t e r s t r i n g va lue
a s s igned t o A must have 60 c h a r a c t e r s .

Here i s an example of how an ARRAY OF CHAR (s t r i n g) type i s dec l a r ed
w i t h i n a TYPE d e c l a r a t i o n :

TYPE
STRING1 = ARRAY[1..10] OF CHAR;

Two more examples fo l low:

TYPE
STRING1 = ARRAY[1..10] OF CHAR;

VAR
STRING2 : STRING1;

BEGIN
STRING2 := ,ABCDEFGHU,;
STRING2 := 'AB' {This i s an i n v a l i d a s s ignment .}

{The s t r i n g must c o n t a i n 10}
{ c h a r a c t e r s . }

END.

Here i s another example:

TYPE
LENGTH = 1 . . 30 ;
STRING30 = ARRAY [LENGTH] OF CHAR;

VAR
ALPHA : STRING30;
I : LENGTH;

BEGIN
FOR I := 1 TO 30 DO

READ (ALPHA[I])
END.

Note

Although Prime Pasca l does no t suppor t t h e keyword PACKED i n
type d e f i n i t i o n s , an ARRAY OF CHAR i s always s t o r e d a s a packed
ARRAY OF CHAR on Prime computers .

6-17 Second E d i t i o n

DOC4303-191

Array of Characters (the Prime Extension): At Rev. 19 .1 , the ARRAY OF
CHAR was enhanced into a Prime extension tha t makes reading of these
arrays much eas ie r .

On Rev. 19.1 (or higher) systems, you can read an array of characters
as one uni t , instead of reading one character a t a time. For example,
Prime1 s ARRAY OF CHAR function allows you to declare and read character
arrays l i ke t h i s :

PROGRAM Primearray;
VAR

A : ARRAY[1..10] OF CHAR;
B : ARRAY[1..60] OF CHAR;

BEGIN
READLN(A) ;
REAELN (B)

END.

Previously, reading was done one character a t a time within a loop:

BEGIN
FOR I := 1 TO 10 DO

READ(A[I]);
FOR I := 1 TO 60 DO

READ(B[I])
END.

19.1
You can still use loops to read an ARRAY OF CHAR; however, it is
easier and more efficient to use the Prime extension.

Note

If you do not have a Rev. 19.1 (or higher) system, then you
must use the loops.

You can read or wr i te a Prime character array up to 256 characters
long.

Consider the following:

VAR
A : ARRAY[1..30] OF CHAR;

BEGIN
READLN(A) ;

With READLN, if fewer than 30 characters a re typed in, the remaining
characters wi l l be b lank-f i l led . If more than 30 characters a re typed
in, only the f i r s t 30 characters w i l l be assigned. You wi l l not be
warned tha t you have typed in extra characters .

Second Edition 6-18

7
Expressions

An expression is a single operand or a combination of operands and
operators that are evaluated to produce a value.

OPERANDS

An operand may be any of the following expressions:

• A variable

• An unsigned or signed number

• A character string

• A constant identifier

• A function designator (explained in Chapter 9)

• NIL

• A set

7-1 Second Edition

DOC4303-191

Here a r e some examples of v a l i d operands :

15

(x+y+z)

SIN(x+y)

[RED, C, GREEN]

[1 , 5 , 1 0 . . 1 9 , 23]

NOT P

I * J + 1

-N

OPERATORS

Operators modify an operand or combine two operands. Operators can be
classified as arithmetic, relational, set, Boolean, or integer.
(Integer operators are Prime extensions.)

Arithmetic Operators

An arithmetic operator specifies computation to be performed on its
operands to produce a single numeric value. Table 7-1 lists the binary
and unary arithmetic operators and the data types of operands and
results.

Second Edition 7-2

EXPRESSIONS

Table 7-1
Arithmetic Operators

Binary Opera tors

+ (add)
- (s u b t r a c t)
* (mul t iply)

/ (d ivide)

DIV (d iv ide wi th
t r u n c a t i o n)

MDD (modulus or
remainder)

Unary Opera to r s

+ (i d e n t i t y)
- (s i g n - i n v e r s i o n)

Type of Operands

INTEGER/LONG INTEGER
REAL/LONGREAL

INTEGER/LONG INTEGER
REAL/LONGREAL

INTEGER or
LONG INTEGER

INTEGER or
LONG INTEGER

INTEGER/LONG INTEGER
REAL/LONGREAL

Type of R e s u l t

INTEGER/LONG INTEGER
i f both operands a r e
INTEGER/LONG INTEGER ;
o the rwise REAL/LONGREAL

REAL/LONGREAL

INTEGER/LONG INTEGER

INTEGER/LONG INTEGER

Same as operand

19.1

Relational Operators

The relational operators are used to compare values of data types —
scalar, ARRAY OF CHAR (string), pointer, or SET. In any given
comparison, both operands must be of the same type, except that INTEGER
can be compared with LONGINTEGER, and REAL with LONGREAL. The result
of the comparison i s a BOOLEAN value, TRUE or FALSE. Table 7-2 l i s t s
the legal relational operators and data types of operands.

19.1

7-3 Second Edition

DOC4303-191

19.1 |

Table 7-2
Relational Operators

Operator

<>

<
>

<=

<=

>=

>=

IN

Operation

equality
inequality

less than
greater than

less or equal

set inclusion
("is contained
in")

greater or equal

set inclusion
("contains")

set membership

Type of Operands

SET, scalar, pointer, or
ARRAY OF CHAR

scalar or ARRAY OF CHAR

scalar or ARRAY OF CHAR

SET

scalar or ARRAY OF CHAR

SET

first (left) operand is any
scalar type (except REAL and
LONGREAL), second (right)
operand is a set of that type

Here are some examples of re la t ional operators.

F i r s t , l e t

x := ['A', ' D ' , ' C , 'B']

y := ['A', 'E ']

then

x = ['A', ' B ' , ' C , 'D'] {true }

y <= x {false}

y <> x {true }

•B' IN x {true }

Second Edition 7-4

EXPRESSIONS

Integer Operators

The integer operators & and ! are Prime extensions. They perform
Boolean AND and OR operations on integers respectively. These
operators also work on longintegers. For example, if you wanted to
perform AND and OR operations on the two numbers 10 and 12, you could
say:

VAR
A,B,C,D : integer;

BEGIN
A
B
C
D
WRITELN(C) ;
WRITELN(D);

END.

10;
12;
A & B; {AND operation}
A i B; {OR operation}

At the machine level, the two binary numbers that stand for decimal 10
and 12 are 1010 and 1100 respectively. (The 12 leading zeros are
emitted.) During the AND and OR operations, the digit 1 means TRUE and
0 means FALSE. The first digit of 1010 is compared with the first
digit of 1100, and so on, to produce new binary (and hence decimal)
numbers C and D. The machine, therefore, calculates:

1010 AND 1100 = 1000 {decimal 8}
1010 OR 1100 = 1110 {decimal 14}
C = 8
D = 14

Integer operators can be useful when you need a lot of Boolean TRUE and
FALSE values or "switches" that can be set to 1 (TRUE) or 0 (FALSE) in
the internal binary representation of any decimal number.

OPERATOR PRECEDENCE

The precedence among operators determines the order in which
expressions are evaluated. The precedence of operators is as follows:

1. Operations in parentheses Highest precedence
(done first)

2. NOT, unary - and +

3. *, /, DIV, MOD, AND, &

4. +, -, OR, !

5. =, <>, <, >, <=, >=, IN Lowest precedence
(done last)

7-7 Second Edition

DOC4303-191

Order of Evaluation

When there are several operations a t the same leve l of precedence,
operations are performed from l e f t to r igh t .

the

Parentheses may be used to override the normal evaluation order. An
expression enclosed in parentheses is treated as a single operand, and
is evaluated first. When expressions are contained within a nest of
parentheses, evaluation proceeds from the innermost set to the
outermost set (inside out).

For example:

7 + A * 2 - 5 D I V 3 + A

2 1 4 3 5

{Numbers below the operators
indicate the order in which
the operations are performed.}

((7 + A) * 2 - 5) D I V 3 + A

1 2 3 4 5

Second Edition 7-8

STATEMENTS

The following a re some guidelines for using assignment statements:

• The var iab le or function iden t i f i e r and the expression must be
of compatible types.

• Neither the variable/function iden t i f i e r nor the expression
should be a FILE type or a s t ructured type with a FILE element.

• The var iab le or function iden t i f i e r can be of type REAL and the
expression can be of type INTEGER; however the converse i s not
possible . (You can assign an integer to a r e a l , but not a real
to an integer unless the TRUNC function i s used.)

• The va r iab le or function iden t i f i e r can be of type LONGINTEGER
and the expression can be of type INTEGER, but the converse may
cause your program to f a i l . (You may assign an integer to a i g -̂
longinteger, but a longinteger w i l l be truncated when assigned
to an in teger .) This ru le also appl ies to REAL and LONGREAL for
the same reason.

• Any element, group of elements, or expression t h a t i s of a
pa r t i cu la r SET type must be assigned t o a va r iab le or function
iden t i f i e r of the same SET type.

• The var iab le or function iden t i f i e r and expression can be type
ARRAY OF CHAR (string) as long as both arrays have the same
number of elements.

• The var iab le or function iden t i f i e r and expression can be
subranges of each other.

PROCEDURE STATEMENT

A procedure statement ac t iva tes the execution of a procedure. A
procedure i s a subprogram, which i s declared in the main program.

The format of the procedure statement i s :

procedure-identif ier [(parameter-l ist)] ;

The procedure-identif ier i s the name of the procedure. When the
procedure statement i s encountered in the main program, the procedure
i s executed. The parameter- l i s t i s opt ional . If you want to pass
values to and from the main program and the procedure, you would use
parameters. The parameter- l is t i s enclosed in parentheses, and the
parameters a re separated by commas.

8-3 Second Edition

DOC4303-191

Here a r e some examples of procedure s t a t e m e n t s :

PRINTHEADING;

TRANSPOSE (A,N,M);

BISECT(FCT, - 1 . 0 , + 1 . 0 , X);

For more informat ion on procedures and f u n c t i o n s , i nc lud ing e x t e r n a l
procedures and f u n c t i o n s , see Chapter 9 .

COMPOUND STATEMENT

A compound s ta tement i s a sequence of s t a tements s epa ra t ed by
semicolons . The genera l form of a compound s ta tement i s :

BEGIN
s t a t emen t -1 ; s t a t e m e n t - 2 ; . . . [s t a t e m e n t - n]

END;

The keywords BEGIN and END must de s igna t e t h e s t a r t and t h e end of t he
sequence of a compound s t a t emen t . They a r e no t s t a t ement s themse lves .
BEGIN and END should no t be used on a s i n g l e s t a t ement , s t a t e m e n t - 1 .
s t a t e m e n t - 2 . e t c . can be any Pascal s t a t emen t s . A compound s ta tement
can appear anywhere a s i n g l e s ta tement i s a l lowed.

Example 1 :

BEGIN
Z := X;
X := Y;
Y := Z

END;

Example 2 :

IF FLPG = 1 THEN
BEGIN

COUNTER := 0;
READ (CHARACTER);
WHILE (CHARACTER <> BLANK) DO

BEGIN
COUNTER := COUNTER + 1;
READ (CHARACTER)

END;
WRTTELN (' THE NUMBER OF CHARACTERS = ' , COUNTER)

END
ELSE

FLAG := 0;

Second Ed i t i on 8-4

PROCEDURES AND FUNCTIONS

Example 5:

VAR
I , J : INTEGER;

PROCEDURE ADD2 (PROCEDURE Al) ;
BEGIN {procedure ADD2}

Al;
Al

END;
PROCEDURE ADDl;

BEGIN {procedure ADDl}
I := I + 1 1 9 ' 1

END;
PROCEDURE CALLPROC(PROCEDURE X(PROCEDURE Y); PROCEDURE Z);

BEGIN {procedure CALLPROC}
Z;
X(Z)

END;
BEGIN {main program}

I := 0;
CALLPROC(ADD2, ADDl)

END. {I = 3}

PROCEDURES

A procedure i s a user-wri t ten independent program uni t t ha t performs a
set of operat ions. A procedure must be declared in a procedure
declarat ion, a forward procedure declarat ion, or an external procedure
declarat ion before the procedure can be ca l led by a procedure
statement.

Procedure declarat ions a re discussed below. Forward and external
procedure declarat ions a re discussed l a t e r in t h i s chapter.

The external procedure declarat ion i s a Prime extension t o standard
Pascal.

Procedure Declarations

A procedure declarat ion defines and names a procedure. The form of a
procedure declara t ion i s :

PROCEDURE iden t i f i e r [(formal-parameter- l is t)] ; block;

The keyword PROCEDURE begins a procedure declara t ion . The iden t i f i e r
i s the name of the procedure. The l i s t of formal parameters, if any,
enclosed in parentheses, specif ies the name of each formal parameter
followed by i t s t ype - iden t i f i e r . If you choose to use them, parameters
can be passed by value or by reference t o the subprogram. Parameters
a re discussed e a r l i e r in t h i s chapter.

9-9 Second Edition

DOC4303-191

Except in forward or external declarat ions, the procedure heading
described above i s immediately followed by the procedure block.

A procedure block has the same general form as a program block. I t may
contain declarat ions for l abe ls , constants, types, var iab les ,
procedures, and functions and a sequence of executable statements
surrounded by a BEGIN and END pa i r . However, the procedure block ends
with a semicolon instead of a period.

Unlike a function, the name of a procedure must not be assigned a
value. Therefore, do not specify a data type for a procedure i t s e l f .

Note

Iden t i f i e r s and l abe l s declared in the main program are global .
That i s , they can be referenced throughout the e n t i r e program,
including these procedures (or functions), so long as the
procedures a re contained within the main program (are not
ex te rna l) . However, those iden t i f i e r s and l abe l s applying only
to a pa r t i cu la r procedure (or function) but not to the program
as a whole should be declared within t ha t procedure (or
funct ion) . These iden t i f i e r s and labe ls a re l o c a l .

Invoking Procedures

A procedure statement invokes, or c a l l s , a procedure. A procedure
statement has the form:

procedure-identif ier [(actual-parameter-1 [,ac tua l -parameter -2] . . .)]

The pr ocedur e- ident i f ier i s the name of the ca l led procedure. When the
cal led procedure has one or more formal parameters defined in i t s
heading, the procedure statement must contain the corresponding actual
parameters along with the procedure-identif ier .

Second Edition 9-10

PROCEDURES AND FUNCTIONS

Example 1 :

PROGRAM TEST;

PROCEDURE INDATA;...BEGIN...END;
PROCEDURE SORT;.. .BEGIN... END;
PROCEDURE CUTDATA;... BEGIN... END;
{Main program begins h e r e . }
BEGIN

INDATA;
SORT;
OUTDATA

END.

Example 2 :

PROGRAM CURVE (INPUT, OUTPUT) ;
VAR

X, Y : REAL;
I : INTEGER;

PROCEDURE PLOT(Af B: REAL; J : INTEGER); {A, B, & J a r e formal va lue
p a r a m e t e r s . }

BEG I N . . . END;
PROCEDURE ENDPLOT;

BEGIN... END;
{Main program begins h e r e . }
BEGIN

X := 0 . 0 ;
Y := 1.0 + SIN(X);
READLN(I);
I := I + 2 ;
PLOT(X, Y, I) ; {X, Yf and I a r e a c t u a l pa r ame te r s . }

ENDPLOT;

END.

9-11 Second E d i t i o n

DOC43 03-191

Standard Procedures

A standard procedure, denoted by a predefined i den t i f i e r , i s a b u i l t - i n
procedure supplied by the Pascal language.

Prime Pascal supports the following standard procedures:

• F i l e Handling Procedures: RESET, GET, REWRITE, PUT, READ,
READLN, WRITE, and WRITELN. (See Chapter 10.)

• I/O Auxiliary Procedures: PAGE and CLOSE. (See Chapter 10.)

• Dynamic Allocation Procedures: NEW and DISPOSE. (See Chapter
6.)

UQfcS

The CLOSE procedure i s a Prime extension t o standard
Pascal.

Use of the standard t ransfer procedures PACK and UNPACK
in Prime Pascal wi l l generate an error message and cause
your program to f a i l because PACK and UNPACK are not
supported in Prime Pascal. This i s a Prime r e s t r i c t i o n .

FUNCTIONS

Functions are also user-writ ten subprograms. Here are some
characteristic t r a i t s of functions:

• The keyword FUNCTION i s used instead of PROCEDURE.

• Similar to a procedure, a function i s a subprogram.

• Unlike procedures and standard functions, the names of
user-wri t ten functions must represent values . Procedure names
and standard function names cannot represent values.

• Unlike a procedure, a data type must be specified for the
function i t s e l f in the function heading.

A function i s an independent program unit tha t accepts zero or more
parameters to produce a single output value. A function must be
declared in a function declaration, a forward function declarat ion, or
an external function declaration before the function can be invoked.

Function declarat ions are discussed below. Forward and external
function declarat ions a re discussed l a t e r in t h i s chapter.

The external function declaration i s a Prime extension to standard
Pascal.

Second Edition 9-12

PROCEDURES AND FUNCTIONS

Using the -EXTERNAL Option Instead of ($E+I: An a l t e rna t i ve to using
the {$E+} switch in the subprogram i s to use the -EXTERNAL option every
time you compile the f i l e of subprograms. For example:

PASCAL filename -EXTERNAL

The filename i s the name of the f i l e tha t contains the external
subprograms. (See Chapter 2 for more information on compiling
programs.)

Defining External (Global) Variables with f$E+); I f you want your
external subprograms to reference the var iab les t ha t a re declared in
the ca l l ing program, you must use the {$E+} and {$E-} switches in the
VAR declarat ion of the ca l l ing program. For example:

VAR
I , J : INTEGER;

{$E+}
X, Y, Z : INTEGER;

{$E-}

Here i s an example of a program tha t c a l l s an external procedure. I t
has one var iab le , ADDSUM, tha t i s used ex terna l ly :

PROGRAM Fi le 1;
VAR

I , J : INTEGER;
{$E+}

ADDSUM : INTEGER;
{$E-}
PROCEDURE ADD (A, B : INTEGER); EXTERN;
BEGIN {main program}

I := 23;
J := 45;
ADD(I, J); {external procedure is called here}
WRTTELN (ADDSUM)

END.

Here i s the external procedure ADD, which the above program c a l l s .
Notice t h a t the external var iab le ADDSUM must a l so be declared in the
subprogram a t the top of the f i l e , outside the procedure or function
block:

{$E+}
VAR

ADDSUM : INTEGER;
PROCEDURE ADD (A, B : INTEGER);
BEGIN

ADDSUM := A + B
END;

9-17 Second Edition

DOC4303-191

Compiling and Loading Subprograms; Remember tha t each external
subprogram f i l e must be compiled and loaded separately . After you have
entered SEG's LOAD subprocessor, the main program must be loaded before
the separately compiled subprograms. For more information on
compiling, loading, and executing programs, see Chapters 2 and 3 .

External subprogram names, as well as the names of main programs,
cannot be more than 32 characters long.

Caution

Do not define a main program as external. An error message
will result. The following example is invalid:

{$E+}
PROGRAM Main;

BEGIN

END.

Subprograms Written in Other Languages

Subprograms declared in external procedure or function declarat ions in
the main program can be wri t ten in any Prime high-level language or
Prime Macro Assembly (PM&) language with cer ta in r e s t r i c t i o n s :

• There must be no confl ic t of data types for var iab les being
passed as parameters. For example, a FIXED BINARY(15) in PL/I
i s equivalent to an INTEGER in Pascal.

• Programs compiled in e i ther 64V or 321 mode cannot reference or
be referenced by programs compiled in R mode. Programs in 64V
or 321 mode may reference each other.

For more information on interfacing Pascal with other languages, see
Appendix D.

Second Edition 9-18

10
Input and Output

In Prime Pascal, data can either be input from your terminal or be
input from a PRIMOS input data f i l e . Similarly, the output can either
be written out to your terminal or to a PRIMOS output data f i l e .

This chapter explains how to input and output data in Prime Pascal,
using both of these methods.

Throughout th is chapter, various bui l t - in I/O (input/output) functions
and procedures that manipulate data are discussed. These include eight
file-handling procedures (RESET, GET, READ, READLN, REWRITE, PUT,
WRITE, and WRTTELN), two BOOLEAN functions (EOF and EOLN) and two
auxiliary procedures (PAGE and CLOSE).

Note

Prime Pascal performs I/O operations only on data stored in
disk files or data supplied at the terminal.

10-1 Second Edition

DOC4303-191

INPUTTING AND OUTHJTTING DATA AT THE TERMINAL

When you execute a program, and your program requests data a t execution
time, i t can wait for you to input the data a t your terminal. For
example:

PROGRAM Add;
VAR

A, B, C : INTEGER;
BEGIN

READLN(A);
READLN(B) ;
C := A + B;
WRITELN(C)

END.

In the example above, the computer expects you to enter two in tegers a t
your terminal upon execution. The execution would look l i ke t h i s ,
where user input i s underlined:

OK,
SEG ADD
3J1
50.

80 {computer writes out result here}
OK,

For more information on executing programs, see Chapter 3 .

If you were using READS instead of READLNs in the example above, you
could place the in tegers on the same l i n e , separated by spaces or a
comma. For example, given the following statements:

READ(X, Y);
Z := X + Y;
WRITELN(Z);

your terminal input and execution would look like this:

OK,
SEG ADD
30 50 80
OK,

A space placed after the 30 and after the 50 signals the end of each
integer. It also tells the computer that each integer has two digits.
Notice that with READs, the computer outputs the sum on the same line
as your input.

Second Edition 10-2

INPUT AND OUTPUT

You can make t h e computer prompt you for i npu t by p u t t i n g WRITE or
WRITELN s t a t emen t s i n your program. For example:

VAR
A,B,C : INTEGER;

BEGIN
WRITELN('Enter two n u m b e r s : ') ;
READLN(A);
READLN(B) ;
C := A+B;
WRITELN (C)

END.

Your input and execution would look like this:

OK,
SEG ADD
Enter two numbers:
10
20

30
OK,

If you were using READS on CHAR type data instead of INTEGER or REAL,
you would not put spaces between the input characters. Therefore, with
the following program:

PROGRAM Letters;
VAR

X, Y, Z : CHAR;
BEGIN
WRITE('Enter three letters: ') ;
READ(X, Y, Z);
WRITELN(X:10, Y, Z)

END.

your input and execution would look like this:

OK,
SEG LETTERS
Enter three letters: PQR PQR
OK,

The 10 in the WRITELN statement formats the output so t h a t nine spaces
are placed before the P. Notice tha t the WRITE statement prompts you
for input.

10-3 Second Edition

DOC4303-191

Using Erase and Ki l l Characters

PRIMOS provides two special character functions cal led erase and k i l l .
The erase character (the double quotation mark) erases the immediately
preceding character . For example, if you type 1235 when you wanted t o
type 1234, you can correct your mistake by typing the double quote
followed by the correct input:

1235"4

Ihe kill character (the question mark) deletes your entire current
line. For example, if you mistakenly type this:

123456789

and were supposed to type t h i s :

ABCDEFGHI

you can correct your mistake by typing the question mark followed by
the correct input:

1234567897ABCDEFGHI

Note

Your System Administrator may have changed the Prime-supplied
erase and k i l l characters to some other characters . If so,
find out what they are . (You can change them yourself, too.)

How to Use Erase and Ki l l on Terminal Input: Before Rev. 1 9 . 1 , use of
Prime's erase and k i l l characters on input from the terminal was not
possible because each character was assigned to the program as soon as
i t was typed. Not only was i t too l a t e to use an erase or k i l l
character , but a lso an erase or k i l l character i t s e l f was assigned.

Now you can use the erase and k i l l characters by using the -INTERACTIVE
switch in the RESET statement in your program. For example:

VAR
1 9 i I , J : INTEGER;

BEGIN
RESET (INPUT, '-INTERACTIVE');
READLN(I);
READLN(J)

END.

The -INTERACTIVE switch is a Prime extension. When this switch is
used, you can erase or kill anything on the current line — that is,
before you enter a carriage return. The word -rNTERACTIVE must be
enclosed in single quotes.

Second Edition 10-4

INPUT AND OUTPUT

Caution

You can only use READLNs with t he -INTERACTIVE swi tch . Do no t
use READS. A READ w i l l no t work wi th -INTERACTIVE because a
READ, by d e f i n i t i o n , s t i l l a s s i g n s a c h a r a c t e r a s soon a s i t i s
typed a t t h e t e r m i n a l , even be fo re t h e c a r r i a g e r e t u r n i s h i t .
An a t t empt t o use READS w i l l g e n e r a t e an e r r o r message a t
run t ime .

The RESET s ta tement opens a PRINDS da ta f i l e for r e a d i n g . RESET i s
u s u a l l y used t o open inpu t da ta f i l e s ; however, t h e r e a r e s p e c i a l
c a s e s , such as t h e example above, where RESET i s used t o man ipu la te
inpu t from t h e t e r m i n a l . (RESET i s f u l l y d i s c u s s e d l a t e r i n t h i s
c h a p t e r .)

The word INPUT i n t h e RESET s ta tement i s a s t a n d a r d Pasca l t e x t f i l e
i d e n t i f i e r . -INTERACTIVE can only be used wi th t h e f i l e INPUT. (For
more informat ion on t h e s p e c i a l func t ions of t h e f i l e t y p e s INPUT and
OUTPUT i n Prime P a s c a l , see Chapter 6 and t h e d i s c u s s i o n on da t a inpu t
f i l e s l a t e r i n t h i s c h a p t e r .)

How t o Turn t h e -INTERACTIVE Switch Off; S ince t h e
f e a t u r e i s a swi tch , you can t u r n i t on or off w i t h i n a
you want t o t u r n t h e -INTERACTIVE f e a t u r e off use t h e -TIY f e a t u r e i n
another RESET s t a t e m e n t . For example:

-INTERACTIVE
program. If

1 9 . 1

VAR
A, B, C, D : INTEGER;

BEGIN
RESET(INPUT, '-INTERACTIVE1);
READLN(A) ;
READLN(B) ;
RESET (INPUT, ' -TTY 1) ;
READ(C);
READ(D)

END.

Use of -TTY l e t s you go back t o i n p u t t i n g da ta from t h e t e rmina l i n t h e
"normal" way, wi thout t h e use of P r ime ' s e r a se and k i l l c h a r a c t e r s .
The -TTY swi tch must be used only with t he s t a n d a r d f i l e INPUT. (For
informat ion on t h e o the r uses of -TTY, see t h e d i s c u s s i o n on i npu t da ta
f i l e s l a t e r i n t h i s c h a p t e r .)

P r i m e ' s -INTERACTIVE ex tens ion d i f f e r s from s t anda rd Pasca l i n t h e
fo l lowing ways:

• There i s no such feature in standard Pascal .

• READs a r e no t a l lowed when us ing -INTERACTIVE.

10-5 Second Ed i t i on

DOC4303-191

19.1

• In standard Pascal, assignments are supposed to be done when a
character is typed at the terminal. With the -INTERACTIVE
switch, assignments are done only after the carriage return is
hit.

• The erase and kill characters are given special meaning. In
standard Pascal, the carriage return is the only special
character.

INPUTTING AND OUTPUTTING DATA WITH PRIMDS FILES

In Prime Pascal, data can be input from an input data file. Similarly,
the computer can output data to an output data file. These data files
are PRIMDS files, similar to the PRIMDS file that contains your
program. These PRIMDS files can be placed in any directory that you
wish.

Upon execution of your program, the computer opens input and output
files, retrieves the data from the input file, performs operations
using that data, outputs results into an output file, and closes the
input and output files.

Note

If you do not use input and output f i l e s , data w i l l be input
from and output to the terminal by default .

CREATING AND USING INPUT DATA FILES

When you want to place data in a f i l e to be read and operated on by a
program, you can create a new PRIMDS f i l e and type your data in to tha t
f i l e , using Prime's l ine edi tor , ED, or Prime's screen ed i to r , EMACS.
(See the New User' s Guide to EDITOR and RUNOFF, the EMACS Primer, or
the EMACS Reference Guide.)

Once your data has been typed into the f i l e , you would name the f i l e ,
as you would name any PRIMDS f i l e .

Opening the Input F i le

In your program, you must t e l l the computer t ha t the data your program
needs i s located in a PRIMDS data f i l e . This i s ca l led opening the
input f i l e . All input f i l e s a re opened with Pasca l ' s RESET procedure.

Second Edition 10-6

INHJT AND OUTPUT

When INPUT i s used wi th a da ta f i l e , t he name of t h e f i l e must be given
a s t h e second parameter i n t h e RESET procedure , a s shown above.

I f a f i l e i s no t s p e c i f i e d i n a READ or READLN s t a t emen t , t h e s t anda rd
t e x t f i l e INPUT i s assumed. For example, t h e fo l lowing have t h e same
e f f e c t , whether t he s t anda rd t e x t f i l e INPUT i s a da t a f i l e or t h e
t e r m i n a l :

READ (INPUT, A);

READ(A);

For more information on INPUT, see Chapter 6.

Switching from Standard INPUT File to Terminal

If you open an input data file with the standard textfile INPUT, and
want to switch to inputting data from the terminal, use the -TTY switch
in another RESET procedure. For example:

VAR
A, B : INTEGER;
INFILE : FILE OF CHAR;

BEGIN
RESET (INPUT, ' TNDATA') ;
READLN (INPUT, A);
RESET (INPUT, ' -TTY') ;
READ(B)

END.

The va lue of A w i l l be read from an i npu t f i l e named INDATA, and t h e
v a l u e of B w i l l be read from t h e t e r m i n a l . The s t a n d a r d f i l e INPUT i s
t h e f i r s t parameter wi th -TTY. The -TTY swi tch must be enc losed i n
s i n g l e q u o t e s .

The -TTY swi tch a l s o works wi th REWRITE and t h e s t anda rd t e x t f i l e
OUTPUT.

CREATING AND USING OUTPUT DATA FILES

When you want t o w r i t e da t a out t o an output f i l e , simply open t h e f i l e
and name i t us ing t h e REWRITE procedure .

The REWRITE Procedure

The format of t h e REWRITE procedure s ta tement i s *

REWRTTE(file, ' f i l e n a m e ') ;

10-11 Second E d i t i o n

18.3

DOC43 03-191

The f i r s t parameter f i l e i s a Pascal f i l e v a r i a b l e of a FILE type t h a t
i s a s s o c i a t e d wi th t h e output f i l e . The second parameter , ' f i l e n a m e '
i s t h e a c t u a l name of t he PRIMOS f i l e . This name must be enc losed i n
s i n g l e q u o t e s . The i n c l u s i o n of the second parameter i s a Prime
ex t ens ion .

You do no t have t o c r e a t e a PRIMDS output f i l e beforehand. The REWRITE
procedure w i l l c r e a t e a PRIMOS f i l e for you upon execu t ion . For
example:

PROGRAM Wri t eou t ;
VAR

A, B, C : INTEGER;
OUTFILE : FILE OF CHAR;

BEGIN
READLN(A) ;
READLN(B);
C := A + B;
REWRITE (OUTFILE, 'OUTDATA');
WRITELN(C) ;
CLOSE (OUTFILE)

END.

OUTFILE i s dec l a r ed a s FILE OF CHAR. A and B a r e read from the
t e r m i n a l . REWRITE c r e a t e s a PRIMOS f i l e named OUTDATA i n your
d i r e c t o r y . The va lue of C i s w r i t t e n out t o t h e new f i l e , and t h e f i l e
i s c lo sed wi th CLOSE. (The CLOSE procedure i s d i s cus sed l a t e r i n t h i s
c h a p t e r .)

The second parameter ' f i l ename ' can a l s o be a pathname. For example:

REWRITE (OUTFILE, ' PAUL>HOMEWORKXXFTDATA');

An output f i l e c a l l e d OUTDATA w i l l be c r e a t e d i n t h e s u b d i r e c t o r y
HOMEWORK w i t h i n t h e d i r e c t o r y PAUL.

Note

Be su re t o f i nd out what your d i r e c t o r y a c c e s s r i g h t s a r e a t
vf t i i r i n.cs4-al 1 sjt-i on your i n s t a l l a t i o n .

Second Edition 10-12

INPUT AND OUTPUT

The use of EOF, as well as RESET, GET, REWRITE, and PUT is illustrated
in the following example:

VAR
INFILE, OUTFILE : TEXT;

BEGIN
RESET (INFILE, 'INDATA');
REWRITE (OUTFILE, 'OUTDATA');
WHILE NOT EOF (INFILE) DO

BEGIN
OUTFILE" := INFILET;
PUT (OUTFILE);
GET (INFILE)

END;
CLOSE(INFILE); {The CLOSE procedure i s discussed a t the end}
CLOSE(OUTFILE) {of t h i s chapter .}

END.

The BOLN Function: The function EOLN t e s t s for an end-of-l ine
condition in a t e x t f i l e . I t has the form:

EOLN(file)

This function is true if the buffer variable file" corresponds to the
position of a line separator marking the end of the current line. The
line separator is the ASCII character LF (Line feed), which is a
carriage return. EDLN is applied to the standard textfile INPUT, if
the parameter file is omitted, whether INPUT is a data file or the
terminal.

Auxiliary Procedures

There are two auxiliary procedures that manipulate I/O in Prime
Pascal — PAGE and CLOSE. The CLOSE procedure is a Prime extension.

The PAGE Procedure: The form of the PAGE procedure is:

PAGE (file)

The PAGE procedure generates a skip to the top of a new page before the
next line of the output textfile file is written. If the single
parameter file is omitted, then this procedure is applied to data that
is written out to the standard textfile OUTPUT by default, whether
OUTPUT is a data file or the terminal.

10-23 Second Edition, Update 1

UPD4303-192

For example:

WRITELN (' Page T e s t ') ;
WRITELNi'Page 1 ') ;
PAGE;
WRITELNCPage 2') ;

The CLOSE Procedure: All input and output data f i l e s must be
exp l i c i t ly closed using the CLOSE procedure. Otherwise they w i l l
remain open af ter the program terminates.

The form of the CLOSE procedure i s :

CLOSE (f i l e) ;

The CLOSE procedure is a Prime extension to standard Pascal.

For example:

VAR
Fyle: TEXT;

BEGIN
REWRITE(Fyle, 'FYLE');
WRITELN(Fyler »ABC');
WRrTELN(Fylef 'DEF');
CLOSE(Fyle)

END.

Second Edition, Update 1 10-24

11
Standard Functions

A standard function, denoted by a standard i d e n t i f i e r , i s a b u i l t - i n
function supplied by the Pascal language. There are four types of
standard functions — ar i thmet ic , t ransfer , ordinal , and BOOLEAN.

ARITHMETIC FUNCTIONS

ABS(X) Computes the absolute value of X. The type of X must
be INTEGER, LOSE INTEGER, REAL, or LONGREAL. The type I 19.1
of the r e su l t i s the same as t h a t of X.

SQR(X) Computes the square of X. X and the r e s u l t w i l l be of
the same data type: INTEGER, LONGINTEGER, REAL, or
LONGREAL.

Nc-te

For the following ar i thmet ic functions, the type of X must be
INTEGER, LCNGINTEGER, REAL, or LONGREAL. The type of r e s u l t i s
always REAL or LONGREAL.

SIN(X) Computes the sine of X.

COS(X) Computes the cosine of X.

11-1 Second Edition

19 .1

19.1

DOC4303-191

EXP(X) Computes the value of the base of natural logarithms
ra ised to the power X. I h i s i s exponential function
(e x) .

LN(X) Computes the natural logarithm of X. X must be
greater than zero.

SQRT(X) Computes the non-negative square root of X. X must be
non-negative.

ARCTAN(X) Computes the value, in radians, of the arctangent of
X.

TRANSFER FUNCTIONS

TRUNC(X) Trunca tes a r e a l number i n t o an i n t e g e r . X must be of
1 9 • ! type REAL or LONG-REAL. The r e s u l t i s of type INTEGER

or LONGINTEGER. If X i s pos i t ive then the r e s u l t i s
the greates t integer l e s s than or equal t o X;
otherwise i t i s the l eas t integer greater than or
equal to X. Examples:

TRUNC(3.7) yields 3

TRUNC(-3.7) yields -3

ROUND(X) Rounds a r e a l number t o t h e n e a r e s t i n t e g e r . X must
1 9 • ! be of type REAL or LONGREAL. The r e s u l t , which i s of

type INTEGER or LONGINTEGER, i s the value X rounded.
That i s , if X i s pos i t ive , ROUND(X) i s equivalent t o
TRUNC(X + 0 .5) ; otherwise ROUND(X) i s equivalent t o
TRUNC(X - 0 .5) . Examples:

ROUND(3.7) yields 4

ROUND(-3.7) yields -4

ROUND(3.2) yields 3

ROUND(-3.2) yields -3

Note

Be careful when the r e s u l t of your TRUNC or ROUND function i s
of an INTEGER type. You can assign an INTEGER value to a
LONGINTEGER var iable without any possible e r ro rs , but when you
attempt to assign a LONGINTEGER value to an INTEGER var iab le an

•jo -^ error i s generated. This also applies to REAL and LONGREAL.
(See Chapter 6 for more information on LONGINTEGER and
LONGREAL.)

Second Edition 11-2

STANDARD FUNCTIONS

BOOLEAN FUNCTIONS

ODD(X) X must be of type INTEGER or LONGINTEGER. The r e s u l t 119.1
i s TRUE if X i s odd and FALSE otherwise.

EOF(F) F i s the f i l e var iable of an input f i l e . This
function re turns the value TRUE i f an end-of- f i le
condition e x i s t s for F and FALSE otherwise. I t
appl ies to the standard t e x t f i l e INPUT if the argument
F i s omitted.

EOLN(F) F i s the f i l e var iab le of an input t e x t f i l e . This
function re turns the value TRUE if the end of the
current l i n e i s reached and FALSE otherwise. I t
appl ies to the standard t e x t f i l e INHJT i f F i s
omitted.

11-5 Second Edition

EXTENSIONS AND RESTRICTIONS

$ and _ in i d e n t i f i e r s
(Chapter 4)

The & and ! integer operators
(Chapter 7)

The OTHERWISE keyword
(Chapter 8)

Dollar signs and underscores a re
allowed in i d e n t i f i e r s in Prime
Pascal. However, the underscore
cannot be the f i r s t character .

Prime's integer operators & and I
perform Boolean AND and OR
operations respect ively on decimal
integer and longinteger numbers.

Prime's OTHERWISE keyword can be
used a t the bottom of a CASE
statement to execute an a l t e rna t i ve
statement, or group of statements,
if no statement in the l i s t of CASE
statements has been se lec ted .

The EXTERN a t t r i b u t e
(Chapter 9)

The {$E} compiler switch
(Chapters 2 and 9)

The {$A} compiler switch
(Chapter 2)

The {$L} compiler switch
(Chapter 2)

The {$P} compiler switch
(Chapter 2)

When an ex terna l , separately com­
pi led subprogram i s declared in
Prime Pascal, i t must be declared
with the word EXTERN a t the end of
the declarat ion heading.

External Pascal subprograms can be
separately compiled by including the
{$E+} a t the beginning of the
subprogram f i l e . This switch can
also be used in the ca l l ing
program's va r iab le declarat ions so
tha t the var iab les can be referenced
by the external subprograms.

The {$A} switch cont ro ls the genera­
t ion of code used to perform array
bounds checking a t runtime.

The {$L} switch controls the
pr in t ing of source l i n e s to the
l i s t i n g f i l e a t compile time, if
-LISTING was specif ied.

The {$P} switch controls page breaks
or page "e jec ts" i n the l i s t i n g
f i l e . 18.3

A-3 Second Edition

DOC4303-191

The second parameter 'filename'
in RESET and REWRITE procedures
(Chapter 10)

When input or output data f i l e s a re
used, your RESET and REWRITE
procedures, which open the f i l e s ,
should have as t h e i r second
parameter the name of the ERIMOS
f i l e tha t has to be opened for
reading or wr i t ing . This filename
must be enclosed in s ingle quotes.
The f i r s t parameter i s a var iab le
declared as a FILE type, which i s
associated with the second
parameter, ' f i lename ' .

The CLOSE procedure
(Chapter 10)

The CLOSE procedure must be used to
close an input or output data f i l e
after i t has been opened with RESET
or REWRITE.

The standard data f i l e s
INRJT and OUTPUT
(Chapters 6 and 10)

The standard data f i l e s INRJT and
OUTPUT, when used in a RESET or
REWRITE procedure without the second
parameter 'filename' wi l l
automatically defaul t to I/O to and
from the terminal . If a f i l e i s not
specified in a READ or READLN
statement, the standard t e x t f i l e
INPUT i s assumed, whether the
standard t e x t f i l e INPUT i s a f i l e or
the terminal . This a l so appl ies to
WRITE, WRITELN, and the standard
t e x t f i l e OUTPUT.

Second Edition A-4

B
Data Formats

This appendix illustrates how values of Prime Pascal data types are
represented in storage. For more information on all of the data types,
see Chapter 6. In Prime Pascal, a word consists of 16 bits.

Prime Pascal supports the following data types:

Scalar Data Types

INTEGER .
LONGINTEGER (Prime ex tens ion) | 1 9 . 1
Subrange
REAL I
LONGREAL (Prime ex tens ion) 119.1
CHAR
BOOLEAN
Enumerated

S t r u c t u r e d Data Types

ARRAY
RECORD
SET
FILE

B- l Second Edition

DOC4303-191

Pointer Data Type

Pointer

INTEGER TYPE DATA

Integers a re 16-bit (one word) twos-complement, fixed-point whole
binary numbers. Integers can hold values within the range -32768 to
+32767. Bit 1 i s the sign b i t , which indicates whether the integer i s
pos i t ive or negative. Bits 2-16 are the integer i t s e l f .

1 2 16

INTEGER

LCNGINTEGER TYPE DATA

Longintegers a re 32-bi t (two-word) twos-complement, fixed-point whole
binary numbers tha t hold values within the range -2147483648 to
+2147483647. Bit 1 i s the sign b i t , which indicates whether the
longinteger i s pos i t ive or negative, and b i t s 2-32 are the longinteger
i t s e l f . The LONGINTEGER type i s a Prime extension.

19.1

1 2 16 32

LONGINTEGER

Second Edition B-2

DATA FORMATS

17

65

97

113

129

161

1025

1041

1 2 3 4 5 6 7 8 16

reserved

pointer to position in buffer (3 words)

longinteger buffer size in bytes (2 words)

file unit number (1 word)

maximum number of objects in buffer (1 word)

longinteger size (in bytes) of object in buffer (2 words)

filename or pathname (64 words)

total number of objects in buffer (1 word)

buffer (128 word default for textfiles)

64

96

112

128

160

1024

1040

2048
FILE CONTROL BLOCK

B-7 Second Edition

DOC4303-191

POINTER TYPE DATA

Each value of a pointer type variable i s the ac tual address of the data
to which each var iable i s pointing. Therefore the storage area for
each pointer var iable contains an address.

A pointer i s represented in storage by 48 b i t s (three words).
Specif ica l ly :

• Bi t 1 i s the f au l t code, which determines i f the desired data i s
found or not found.

Bi ts 2 and 3 contain the r ing number of the data t ha t i s being
pointed t o .

Bit 4 i s the extension b i t , which indicates whether the pointer
contains a b i t offset (three-word pointer) or doesn ' t contain a
b i t offset (two-word po in te r) .

Bi ts 5-16 contain the segment number of the data.

Bi ts 17-32 contain the word number of the data within tha t
segment.

Bi t s 33-36 are the b i t offset , which allows the pointer t o point
t o any b i t in memory.

Bi ts 37-48 are reserved for future storage.

fault code

17

33

extension bit

1

0

2 | 3

ring

7
/

5 16

segment #

word #

bit oftset

I 36

reserved

37

32

48

POINTER

Second Edition B-8

D
Interfacing Pascal to

Other Languages

OVERVIEW

This appendix offers guidelines for in terfacing Pascal data types with
compatible data types of other Prime languages.

The key to in ter fac ing compatible data types i s storage representat ion.
For example, a Pascal INTEGER value and a PL/I Subset G Fixed Bin(15)
value are both stored as 16-bi t (one-word) whole binary numbers.
Therefore, an INTEGER value can be passed t o a Fixed Bin (15) value and
vice versa. In order to interface Pascal to another language
successfully, you should be familiar with how Prime Pascal data types
a re represented in s torage. (See Appendix B.) You should a l so be
familiar with the other Prime language and how data types of tha t
language a re represented in storage.

Table D-l matches the compatibil i ty of Prime Pascal data types with the
data types of Prime's PL/I Subset G, FORTRAN 77, FORTRAN IV, COBOL, and
BASIC/VM. The leftmost column l i s t s the generic s torage un i t , which i s
measured in b i t s , bytes , or words for each data type. Each storage
uni t matches the data types l i s t e d to the r igh t on the same row.
Following Table D-l, t h i s appendix br ief ly discusses data type
compatibil i ty and includes several program examples.

For more information on in ter fac ing Pascal t o other languages, as well
as ca l l ing Prime's standard subroutines, see the Subroutines Reference
Guide.

D-l Second Edition

Table D-l
Compatible Data Types

GENERIC
UNTT/PMA

1 b i t

16 bi ts
(one word)

32 b i t s
(two words)

64 b i t s
(four words)

32-bit
Float single
precision

64-bit
Float double
precision

Byte string
(Max. 32767)

Varying
character
string

48-bits
(three words)

256 bi ts

BASIC/VM

—

INT

INT*4

—

REAL

REAL*8

INT

—

—

—

COBOL

—

COMP

—

—

—

—

DISPLAY(5)
PIC A(n)
PIC 9(n)
PIC X(n)

—

—

—

FORTRAN
N

—

INTEGER
INTEGER*2
LOGICAL

INTEGER*4

—

REAL
REAL*4

REAL*8

INTEGER

—

—

—

FORTRAN
77

—

INTEGER*2
L0GICAL*2

INTEGER
INTEGER*4
LOGICAL
L0GICAL*4

—

REAL
REAL*4

REAL*8

CHARACTER
*n

—

—

_

PASCAL

—

INTEGER
BOOLEAN
ENUMERATED

LONGINTEGER

—

REAL

LONGREAL

CHAR
ARRAY
[l . . n] OF
CHAR

*

"<type>

SET

PL/I
SUBSET G

Bit
B i t (l)

Fixed Bin
Fixed
Bin(15)

Fixed
Bin (31)

—

Float
Binary

Float
Bin(23)

F loa t
Bin(47)

Char(n)

Char(n)
Varying

Pointer

Bit(256)

Not available. * See Subroutines Reference Guide

Second Edition D-2

Index

$ and I integer operators (Prime
extension) 7-7, A-3

$ and _ in identifiers (Prime
extension) 4-8, A-3

-321 compiler option 2-13

-64V compiler option 2-13

A compiler switch (Prime
extension) 2-16, A-3

Abbreviations, compile option
2-13 to 2-15

ABS function 6-4, 11-1

Actual parameters 4-4, 9-1,
9-2

Allocating dynamic variables
6-32, 6-33

AND operator 7-6

ANSI standard 1-4, 2-12, 4-4,
6-8, C-l to C-6

ARCTAN function 6-6, 11-2

Arithmetic operators 7-2, 7-3

ARRAY OF CHAR 6-17 to 6-19

ARRAY OF CHAR, (Prime extension)
6-18, 6-19

Array storage 6-16, B-5

ARRAY storage format B-5

ARRAY type 6-14 to 6-20, B-5

Arrays:
external 6-16
multidimensional 6-19, 6-20,
B-5

ASCII character set 4-4, 6-8
to 6-10, C-l to C-6

Assignment compatibility 8-2,
8-3

Assignment statement 8-2, 8-3

Auxiliary procedures:
CLOSE (Prime extension)
10-24, A-4

X-l Second Edition

DOC4303-191

PAGE 10-23, 10-24

BEGIN and END keywords 4-7,
8-4, 8-5

-BIG and -NOBIG compiler options
2-8

Binary (object) f i l e 2 - 1 , 2-4,
2-5, 2-8, 3-1 to 3-7

-BINARY compiler option 2-8

Blanks 4-11, 4-12

Block:
declaration part 5-4 to 5-9
definition 4-2
description 5-3, 5-4
executable part 5-9 to 5-11
illustration 4-3

BOOLEAN operators 7-6

BOOLEAN storage format B-4

BOOLEAN type 6-8, B-4

Boundary-spanning object code
9-5

Call, recursive 9-19 to 9-22

Calling subprograms:
external 9-16
functions 9-14
procedures 8-3, 8-4, 9-10,
9-11

Cardinali ty, data type 6-1

CASE and variant records 6-23
to 6-25

CASE statement 8-11 to 8-14

Changing compiler option
defaults 2-6

Changing erase and kill
characters 10-4

CHAR storage format B-4

CHAR type 6-8 to 6-10, B-4

Character set (See ASCII
character set)

Character string constants
4-11, 6-9

Character strings 4-11, 6-17
to 6-19, D-5, D-6 •

CHR function 6-8 to 6-10, 11-3

CLOSE procedure (Prime
extension) 6-30, 10-7, 10-12,
10-24, A-4

Closing data files 6-30, 10-7,
10-12, 10-24, A-4

Code, object:
boundary-spanning 9-5
ordinary 9-5

Collating sequence 6-8, C-3 to
C-6

Command files 3-8

Command level, PRIMDS 2-2,
2-3, 2-5, 3-2 to 3-8

Command line:
options 2-1, 2-2, 2-6 to 2-15
Pascal compiler 2-2

Comments 4-11, 4-12

Compatibility with other
languages 1-6, 9 - 1 , 9-15 to

9-18, D-l to D-8

Compile-time e r ro r s 2-1 to 2-4

Compiler switches:
A switch 2-16, A-3
E switch 2-9, 2-17, 6-16,
6-22, 9-16 to 9-18, A-3

L switch 2-16, A-3
overview 2-16, 4-12
P switch 2-17, A-3

Second Edition X-2

INDEX

Compiler:
error messages 1-4, 2-1 to
2-4

filename conventions 2-4,
2-5, 3-2 to 3-8

invoking 2-2
option abbreviations 2-13 to
2-15

options 2-1, 2-2, 2-6 to 2-15
PASCAL command 2-2
switches 2-9, 2-16, 2-17,
4-12, 6-16, 6-22, 9-16 to
9-18, A-3

Compiling programs 2-1 to 2-17

Compound statement 8-4, 8-5

Conditional statements:
CASE 8-11 to 8-14
IF 8-10, 8-11

CONST declaration 5-6

Constants:
BOOLEAN 4-9, 6-8
CHAR 4-11, 6-9
character string 4-11, 6-9
declared 5-6
enumerated 6 - 1 1 , 6-12
INTEGER and LONGINTEGER 4-10,

6 - 4 , 6-5
MAXINT 4 - 9 , 6-3
NIL 6-32 , 6 -33 / 7-1
numeric 4 - 8 , 4-10
REAL and LONGREAL 4-10 , 6 -6 ,

6-7
s t anda rd 4-9
subrange 6 - 1 3 , 6-14

Cont ro l (nonpr in tab le)
c h a r a c t e r s 6 - 8 , 1 1 - 3 , 11 -4 ,
C-5, C-6

Control s t a t e m e n t s :
CASE 8-11 t o 8-14
FOR 8-8 , 8-9
GOTO 8-14, 8-15
IF 8-10, 8-11
nes t ed 8 - 5 , 8 -7 , 8-9 t o 8-11
REPEAT 8-6
WHILE 8-7 , 8-8

Control -C e n d - o f - f i l e marker
10-22

Conventions, f i lename (See
Filename convent ions)

COS func t ion 6 -6 , 11-1

CPL f i l e s 3-8

Creating data files:
input 10-6 to 10-11
output 10-11 to 10-14

Creating dynamic variables
6-32, 6-33

Data file I/O 6-30, 10-6 to
10-24

Data files:
closing 6-30, 10-7, 10-12,
10-24, A-4

creating 10-6 to 10-14
opening 6-30, 10-6 to 10-14

Data format (See Storage
format)

Data type cardinality 6-1

Data types:
ARRAY 6-14 to 6-10, B-5
BOOLEAN 6-8, B-4
CHAR 6-8 to 6-10, B-4
enumerated 6-10 to 6-12, B-4
FILE 6-27 to 6-31, 10-6 to
10-24, B-6, B-7

illustration 6-2
INTEGER 6-3, 6-4, B-2
interfacing with other
languages D-l to D-8

LONGINTEGER 6-4, 6-5, A-l,
B-2

LONGREAL 6-7, A-l, B-3
overview 6-1
pointer 6-31 to 6-33, B-8
REAL 6-6, B-3
RECORD 6-20 to 6-25, B-5
SET 6-25 to 6-27, B-5
standard scalar 6-2 to 6-10
storage formats B-l to B-8
structured 6-14 to 6-31
subrange 6-12 to 6-14, B-3

X-3 Second E d i t i o n

DOC4303-191

TEXT 6-29, 10-10
user-defined scalar 6-10 to
6-14

-DEBUG and -N0DEBU3 compiler
options 2-8

Debugger utility 1-5, 2-6 to
2-8, 2-14

Decimal notation 4-10, 6-6,
6-7, 10-21

Declarations:
CONST 5-6
description 5-3, 5-4
LABEL 5-4, 5-5
order of (Prime extension)
5-3, A-2

PROCEDURE and FUNCTION 5-9
TYPE 5-6, 5-7
VAR 5-7 to 5-9

Default field widths 10-20

Default options 2-6

Delimiters, comment 4-12

Designator, function 9-14

Destroying dynamic variables
6-32, 6-33

Directives:
EXTERN 4-9, 9-15, A-3
FORWARD 4-9, 9-15

DISPOSE procedure 6-32

DIV operator 6-4, 7-3

Documents related to Pascal
1-4, 1-5

Dollar signs and underscores in
identifiers 4-8, A-3

Dynamic allocation procedures:
DISPOSE 6-32
NEW 6-32

Dynamic storage 6-32, B-8

Dynamic variables 6-31 to 6-33

E compiler switch (Prime
extension) 2-9, 2-17, 6-16,
6-22, 9-16 to 9-18, A-3

EDITOR 1-4, 1-5, 10-6, 10-8 to
10-10

Elements, Pascal language 4-1
to 4-12

EMACS editor 1-5, 10-6, 10-8
to 10-10

Empty record 6-25

Empty se t 6-26

Empty statement 8-5

END and BEGIN keywords 4-7,
8-4, 8-5

End of F i le (EOF) condition
10-22, 10-23

End of Line (EOLN) condition
10-23

Enumerated storage format B-4

Enumerated type 6-10 t o 6-12,

B-4

EOF function 10-22, 11-5

EOLN function 10-23, 11-5

Erase and kill characters:
changing 10-4
overview 10-4
using on terminal input 10-4
to 10-6

with -INTERACTIVE switch 10-4
to 10-6

Erasing terminal input 10-4 to
10-6

^

Second Edition X-4

INDEX

Error messages:
compile time 2-1 to 2-4
for %INCLUDE f i l e s 2 -3 , 2-4
for -INTERACTIVE switch 10-5
for data types 6-5, 6-7, 6-12

to 6-14, 6-19, 6-27, 11-2
for external subprograms 9-18
for i d e n t i f i e r s 4 -8 , A-5
for keyword PACKED 6-14, A-5
for l abe l s 5-5
for non-ANSI standard 2-12
for PACK and UNPACK 9-12, A-5
for parameters 9-4
for standard functions 6-12,

11-2
format of 2-2
in l i s t i n g f i l e 2-10
loading 3-3, 3-6
overview 1-4
runtime 2-11, 3-3 , 3-6, 6-12,

10-5
sever i ty codes 2-3
significance 2-3
suppressing of 2-8, 2-12

-ERRTIY and -NOERRTTY compiler
options 2-8

Executable (SEG) f i l e 2-5 , 3-2
to 3-8

Executable block par t 5-9 to
5-11

Executable statements 5-9 to
5-11, 8-1 t o 8-16

EXECUTE (load subprocessor)
command 3-8

Executing programs 3-7, 3-8

EXP function 6-6, 11-2

-EXPLIST and -NOEXPLIST compiler
options 2-9

Exponents 4-10, 6-6, 6-7,
10-20, B-3

Expressions 7-1 to 7-8

Extensions (See Prime
extensions)

EXTERN (Prime extension)
directive 9-15, A-3

-EXTERNAL and -NOEXTERNAL
compiler options 2-9, 9-17

External arrays 6-16

External procedures and
functions (See External
subprograms)

External records 6-22

External subprograms:
calling 9-16
declaring 9-15, 9-16
EXTERN (Prime extension)
directive 9-15, 9-16, A-3

from libraries 9-19
overview 9-1, 9-15
written in other languages
9-18, D-l to D-8

written in Pascal 9-16 to
9-18

External var iables 9-17

Field widths 10-18 t o 10-22

Fie lds , var iant 6-23 to 6-25

F i l e control block B-6, B-7

F i le I/O 6-30, 10-6 to 10-24

FILE OF CHAR 6-28 to 6-31,
10-8 to 10-12

FILE OF CHAR, reading and
wri t ing of 10-9, A-5

FILE OF INTEGER 6-28, 6-29,
10-8, 10-9

FILE OF REAL 6-28, 6-29, 10-8,
10-9

F i l e storage B-6, B-7

X-5 Second Edition

DOC4303-191

FILE storage format B-6, B-7

FILE type 6-27 to 6-31 r 10-6
to 10-24, B-5

File variables 6-27 to 6-31,
10-6 to 10-24

File-handling functions:
EOF 10-22, 11-5
EOLN 10-23, 11-5

File-handling procedures:
CLOSE (Prime extension) 6-30,

10-7, 10-12, A-4, 10-2
GET 10-15
PAGE 10-23, 10-24
PUT 10-18
READ 10-15 to 10-17
READLN 10-17
RESET 10-6 to 10-10
REWRITE 10-11 to 10-13
WRITE 10-18 to 10-21
WRTTELN 10-22

Filename conventions:
overview 2-4
prefix 2-5, 3-4 to 3-7
suffix 2-5, 3-2 to 3-4, 3-7
table 3-7

Filename in RESET and REWRITE
(Prime extension) 10-6 to
10-14, A-4

Files, data (See Data files)

Files:
(See a lso Textfi les)
%INCLUDE 2-3 , 2-4, 5-10,

5-11, A-2
closing 6-30, 10-7, 10-12,

10-23, A-4
of CHAR 6-28 to 6-31, 10-8 to

10-12
of INTEGER 6-28, 6-29, 10-8,

10-9
of REAL 6-28, 6-29, 10-8,
10-9

opening 6-30, 10-6 to 10-14
PRIMDS input/output 6-27 to
6-31, 9-16 to 9-18, 10-1,
10-5> to 10-24

standard INPUT 4-9, 6-31,

10-5, 10-10, 10-11, 10-16,
10-17, A-4, 10-22,

standard OUTPUT 4-9, 6-31,
10-13, 10-14, 10-18, 10-22,
10-23, A-4

storage of data B-6, B-7

Fixed variant record part 6-23

FOR statement 8-8, 8-9

Formal parameters 4-4, 9-2,
9-3

Format, line 4-11

FORWARD directive 9-15

Forward procedures and functions
9-14, 9-15

-FRN and -NOFRN compiler options
2-9

FUNCTION declaration 5-9,
9-13, 9-15

Function designator 9-14

Functions:
(See also Subprograms)
declarations 9-13
external 9-15 to 9-19
forward 9-14, 9-15
heading 9-13, 9-15
I/O 10-14 to 10-24
invoking 9-14
overview 9-1, 9-12
recursive 9-19 to 9-22
standard 4-9, 6-4 to 6-12,
9-14, 10-1, 10-15, 10-22,
10-23, 11-1 to 11-5

GET procedure 10-15

Global:
definition 4-2, 5-8, 9-10
external variables 9-17
illustration 4-3

GOTO statement 5-5, 8-14, 8-15

Second Edition X-6

INDEX

Graphic (printable) characters
6-8 to 6-10, 11-3, 11-4, C-5,
C-6

Heading:
external 9-15
function 9-13, 9-15
procedure 9-9, 9-15
program 5-1 to 5-3

I/O at terminal 6-29, 6-30,
10-2 to 10-6

I/O procedures and functions:
CLOSE (Prime extension) 10-24
EOF 10-22, 11-5
EOLN 10-23, 11-5
GET 10-15
overview 10-1, 10-14
PAGE 10-23, 10-24
PUT 10-18
READ 10-15 to 10-17
READLN 10-17
RESET 10-6 to 10-10
REWRITE 10-11 to 10-13
WRITE 10-18 to 10-21
WRITELN 10-22

Identifier length (Prime
restriction) 4-7, A-5

Identifiers:
dollar signs and underscores in

(Prime extension) 4-8, A-3
standard 4-8, 4-9
user-defined 4-8

IF statement 8-10, 8-11

IN operator 6-27, 7-4

%INCLUDE f i l e s 2 -3 , 2-4, 5-10,
5-11, A-2

Index, array 6-14, 6-15

INPUT and OUTPUT, use of 6-31,
10-11, 10-13, A-4

Input and output:
overview 10-1
procedures and functions

10-14 to 10-24
to and from data f i l e s 6-30,

10-6 t o 10-24
to and from terminal 6-30,

10-2 to 10-6

-INPUT compiler option 2-9

INPUT, standard t e x t f i l e 4-9 ,
6-31, 10-5, 10-10, 10-11,
10-16, 10-17, 10-22, 10-23, A-4

Integer (Prime extension)
operators 7-7, A-3

INTEGER storage format B-2

INTEGER type 6-3 , 6-4, B-2

-INTERACTIVE switch (Prime
extension) 10-4 to 10-6, A-2,
B-6

Interfacing Pascal t o other
languages:

ARRAY OF CHAR in ter face D-5
BOOLEAN inter face D-3
CHAR interface D-5
compatibi l i ty t ab l e D-2
enumerated in terface D-3
INTEGER in ter face D-3
LONGINTEGER in ter face D-4
LONGREAL inter face D-5
overview 1-6, 9 - 1 , 9-15 to

9-18, D-l , D-2
pointer in terface D-6
REAL interface D-4
RECORD inter face D-7 to D-8
SET in ter face D-7

Internal representat ions (See
Storage format)

Invoking external subprograms
9-16

Invoking functions 9-14

Invoking procedures 8-3, 8-4,
9-10, 9-11

Invoking the compiler 2-2

Keywords 4-7

X-7 Second Edition

DOC4303-191

Kill character (See Erase and
kill characters)

L compiler switch (Prime
extension) 2-16, A-3

LABEL declaration 5-4, 5-5

Language elements 4-1 to 4-12

Language interfaces 1-6, 9-1,
9-15 to 9-18, D-l to D-8

Libraries:
loading 3-1 to 3-6
Prime system 3-1 to 3-6, 9-19

LIBRARY (load subprocessor)
command 3-2

Library, Pascal 3-1 to 3-6

Line format 4-11

-LISTING compiler option 2-10

Listing file (See Source
listing file)

LN function 6-6, 11-1

LOAD (load subprocessor) command
3-2

-LOAD (SEG option) 3-2

Load subprocessor commands:
EXECUTE 3-8
LIBRARY 3-2
LOAD 3-2
QUTT 3-2

LOAD utility 1-5, 2-5, 3-1 to
3-8

Loading programs:
overview 3-1, 3-2
with prefix method 3-4 to 3-6
with suffix method 3-3, 3-4

Loading subprograms 3-1, 3-3
to 3-6, 9-18

T OC!^1 *

definition 4-4, 5-8, 9-10
external variables 9-17
recursive variables 9-19

LONGINTEGER storage format
(Prime extension) B-2

LONGINTEGER type (Prime
extension) 6-4, 6-5, A-l, B-2

LONGREAL storage format (Prime
extension) B-3

LONGREAL type (Prime extension)
6-7, A-l, B-2

-MAP and -N0_MAP compiler
options 2-10

MAXINT 4-9, 6-3

Messages:
end-of-compilation 2-2, 2-3
error (See Error messages)

MOD operator 6-4, 7-3

Multidimensional arrays 6-19,
6-20, B-5

Nested statements:
defined 8-5
FOR 8-9
IF 8-10, 8-11
WHILE 8-7

NEW procedure 6-32

NIL 6-32, 6-33, 7-1

Non-ANSI standard errors 2-12

Nonprintable (control)
characters 6-8, 11-3, 11-4,
C-5, C-6

NOT operator 7-6

Notation:
decimal 4-10, 6-6, 6-7, 10-21
scientific 4-10, 6-6, 6-7,
10-20, B-3

Second Edition X-8

INDEX

Null program 5-4

Numeric constants 4 -8 , 4-10

Object (binary) f i l e 2 - 1 , 2-4,
2-5 , 2-8 , 3-1 to 3-7

ODD function 11-5

-OFFSET and -NOOFFSET compiler
options 2-10

Opening data f i l e s :
input 6-30, 10-6 to 10-11
output 6-30, 10-11 to 10-14
RESET 10-6 to 10-10

Operands 7 -1 , 7-2

Operator precedence 7-7

Operators, arithmetic:
- 6-4, 6-6, 7-3
* 6-4, 6-6, 7-3
+ 6-4, 6-6, 7-3
/ 6-6, 7-3
DIV 6-4, 7-3
MOD 6-4, 7-3

Operators, BOOLEAN:
AND 7-6
NOT 7-6
OR 7-6

Operators, integer (Prime
extension):
! 7-7
& 7-7

Operators, relational:
< 6-4, 6-8, 6-10, 6-12, 7-4
<= 6-4, 6-8, 6-10, 6-12,

6-27, 7-4
<> 6-4, 6-8, 6-10, 6-12,

6-27, 7-4
= 6-4, 6-8, 6-10, 6-12, 6-27,

7-4
> 6-4, 6-8, 6-10, 6-12, 7-4
>= 6-4, 6-8, 6-10, 6-12,

6-27, 7-4
IN 6-27, 7-4

Operators, SET:
- 6-26, 7-5
* 6-26, 7-5
+ 6-26, 7-5

Operators:
arithmetic 7-2, 7-3
BOOLEAN 7-6
defined 7-1
integer (Prime extension) 7-7
order of evaluation 7-8
precedence of 7-7
r e l a t iona l 7-3 , 7-4

SET 6-26, 6-27, 7-4, 7-5

-OPT1 compiler option 2-11

-OPT3 compiler option 2-11
-OPTIMIZE and -NOOPTIMIZE
compiler options 2-11

Optional program heading (Prime
extension) 5-1, A-2

Options, compiler:
abbreviations 2-13 to 2-15
-BIG and -NOBIG 2-8
-BINARY 2-8
commonly used 2-7
-DEBUG and -NODEBUG 2-8
defaults 2-6
-ERRTTY and -NOERRTTY 2-8
-EXPLIST and -NOEXPLIST 2-9
-EXTERNAL and -NOEXTERNAL
2-9, 9-17

-FRN and -NOFRN
-INPUT 2-9
-LISTING 2-10
-MAP and -NO_MAP
not commonly used
-OFFSET and -NOOFFSET 2-10
-OPT1 2-11
-OPT3 2-11
-OPTIMIZE and -NOOPTIMIZE
2-11

-PRODUCTION and -NOPRODUCTION
2-11

-RANGE and -NORANGE 2-11
-SILENT and -NOS3LENT 2-12
-SOURCE 2-12
-STANDARD and -NOSTANDARD
2-12

-STATISTICS and -NOSTATISTICS

2-9

2-10
2-7

X-9 Second Edition

DOC4303-191

2-12
-UPCASE 2-13
-XREF and -NOXREF 2-13

OR operator 7-6

CRD function 6-10, 6-12, 11-3

Order of declarations (Prime
extension) 5-3, A-2

Order of evaluation 7-8

Ordinal values 6-8 to 6-12,
11-3, 11-4

OTHERWISE (Prime extension)
clause 8-11, 8-14, 8-15, A-3

OUTPUT, standard textfile 4-9,
6-31, 10-13, 10-14, 10-18,
10-22, 10-23, A-4

P compiler switch (Prime
extension) 2-17, A-3

PACK and UNPACK procedures
(Prime restrictions) 9-12,
A-5

Packed arrays 6-14, 6-17, A-5

PACKED keyword (Prime
restriction) 6-14, 6-17, A-5

Page breaks in listing file
2-17, A-3

PAGE procedure 10-23, 10-24

Parameters:
actual 4-4, 9-2
array variable 9-5
formal 4-4, 9-2, 9-3
overview 4-4, 9-1, 9-2
procedures and functions passed
as 9-6 to 9-9

record variable 9-5
value 9-3
variable 9-3, 9-4

PASCAL command 2-2

Pascal:
ANSI standard 1-4, 2-12, 4-4,
6-8, C-l to C-6

arithmetic operators 7-2, 7-3
ASCII character set 4-4, 6-8
to 6-10, C-l to C-6

blanks 4-11, 4-12
BOOLEAN operators 7-6
character strings 4-11, 6-17
to 6-19, D-5, D-6

comments 4-11, 4-12
compiler 2-1 to 2-17
data storage formats B-l to
B-8

data types 6-1 to 6-34
expressions 7-1 to 7-8
identifiers 4-7 to 4-9
input and output 10-1, 6-27
to 6-31

instruction books 1-1
integer operators 7-7
keywords 4-7
language elements 4-1 to 4-12
language interfaces D-l to
D-8, 1-6, 9-1, 9-15 to 9-18

library 3-1 to 3-6
line format 4-11
numeric constants 4-8
operands 7-1, 7-2
operator precedence 7-7, 7-8
operators 7-2 to 7-8
parameters 9-2 to 9-9
Prime extensions 1-2, A-l to
A-4

Prime Pascal 1-2
Prime restrictions 1-2, A-5
procedures and functions 9-1
to 9-22

program structure 5-1 to 5-15
punctuation symbols 4-5, 4-6
related documents 1-4, 1-5
relational operators 7-3, 7-4
separators 4-11
set operators 7-5
standard functions 4-9, 6-4
to 6-12, 9-14, 10-1, 10-15,
10-22, 10-23,

standard procedures 9-12,
10-1, 10-7, 10-11, 10-14 to
10-24

statements 8-1 t o 8-16
storage requirements 6-17,

6-22, 6-32, B-l t o B-8, D-l ,
D-2, 6-16

Second Edition X-10

INDEX

Pass -by - r e f e rence paramete rs
9 - 3 , 9-4

Pass -by-va lue paramete rs 9-3

PMA (See Prime Macro Assembler)

Po in t e r da t a type 6-31 t o
6 -33 , B-8

Po in t e r s t o r a g e format B-8

Precedence of o p e r a t o r s 7-7

PRED func t i on 6-10, 6 -12 , 11-4

P r e f i x :
execu t ing f i l e 3-7
f i lename convent ions 2 - 5 , 3-4

t o 3-7
l oad ing procedure 3-4 t o 3-7

Prime e x t e n s i o n s t o s t anda rd
P a s c a l :

$ and _ i n i d e n t i f i e r s 4 - 8 ,
A-3

%INCLUDE f i l e s 2 - 3 , 2 - 4 ,
5-10 , 5 - 1 1 , A-2

A compiler switch 2 -16 , A-3
ARRAY OF CHAR enhancement

6 -18 , 6 -19 , A-2
CLOSE procedure 6 -30 , 1 0 - 7 ,

10-12 , 10 -23 ,
comment d e l i m i t e r s / * * / 4 - 1 1 ,

A-2
E compiler swi tch 2 - 9 , 2 -17 ,

6 -16 , 6 -22 ,
EXTERN d i r e c t i v e 9 -15 , A-3
Filename i n RESET and

REWRITE 10-6 t o , 10-24 , A-4
-INTERACTIVE swi tch 10-4 t o

1 0 - 6 , A-2, B-6
L compiler switch 2 -16 , A-3
LONGINTEGER type 6 - 4 , 6 - 5 ,

A-l
LONG-REAL type 6 - 7 , A - l , B-3
o p t i o n a l program heading 5 - 1 ,

A-2
order of d e c l a r a t i o n s 5 - 3 ,

A-2
OTHERWISE c l a u s e 8 - 1 1 , 8-14,

8 -15 , A-3
P compiler swi tch 2 - 1 7 , A-3
-TTY swi tch 1 0 - 5 , 1 0 - 1 1 ,

10 -14 , A-2
& and ! i n t e g e r o p e r a t o r s

7 - 7 , A-3

Prime Macro Assembler 1-6,
2 - 9 , 9-18

Prime P a s c a l :
ASCII c h a r a c t e r s e t 6-8 t o

6 -10 , C-l t o C-6
compiler 2 -1 t o 2-17
de f ined 1-2
e x t e n s i o n s 1-2, A-l t o A-4
l i b r a r y 3-1 t o 3 - 6 , 9-19
r e l a t e d documents 1-4, 1-5
r e s t r i c t i o n s 1-2, A-5

Prime r e s t r i c t i o n s t o s t anda rd
P a s c a l :

FILE OF CHAR, r e a d i n g / w r i t i n g
of 1 0 - 9 , A-5

i d e n t i f i e r l eng th 4 - 7 , A-5
PACK procedure 9 -12 , A-5

PACKED keyword 6-14 , 6 -17 ,
A-4

UNPACK procedure 9 -12 , A-5

Prime:
debugging u t i l i t y 1-5 , 2-6 t o

2 - 8 , 2-14
documents r e l a t e d t o Pasca l
1-4, 1-5

filename conventions 2-4,
2-5, 3-2 to 3-8

high-level languages 1-4,
1-6, 9-1, 9-15 to 9-18, D-l
t o D-8

input and ou tpu t 10-1 t o
10-24

l i b r a r i e s 3-1 t o 3 -6 , 9-19
SEG load ing u t i l i t y 1-5 , 3-1

t o 3 - 8 , 2-5
s u b r o u t i n e s 1 -5 , 9-19
t e x t e d i t o r s 1-4, 1-5 , 1 0 - 6 ,

10-8 t o 10-10

2-2 , 2-3, 2-5,
PRIMES:

command l e v e l
3-2 t o 3-8

d a t a f i l e s 6-27 t o 6 - 3 1 ,
1 0 - 1 , 10-5 t o 10-24 , 9-16 t o
9-18

e rase and k i l l c h a r a c t e r s
10-4 t o 10-6

X - l l Second E d i t i o n

DOC4303-191

file variables 10-7, 10-8,
10-13

PASCAL command 2-2, 9-17
SBG command 3-2
subroutines 1-5, 9-19
user file directories 6-27,
10-6 to 10-8, 10-12

Printable (graphic) characters
6-8 to 6-10, 11-3, 11-4, C-5,
C-6

PROCEDURE declarations 5-9, 9-9,
9-10, 9-15

Procedure statement 8-3, 8-4,
9-10, 9-11

Procedures:
(See also Subprograms)
declarations 5-9, 9-9, 9-10
dynamic allocation 6-32
external 9-15 to 9-19
forward 9-14, 9-15
heading 9-9, 9-15
I/O 10-14 to 10-24
invoking 8-3, 8-4, 9-10, 9-11
overview 9-1, 9-9
recursive 9-19 to 9-22
standard 4-9, 6-32, 9-12,
10-1, 10-7, 10-11, 10-14 to
10-24

-PRODUCTION and -NOPRODUCTION
compiler options 2-11

Program def in i t ion 4-2

Program heading:
def in i t ion 4-2
descript ion 5-1 to 5-3

Program s t ruc tu re :
declarat ion par t 5-3 to 5-9
executable par t 5-9 to 5-15
heading 5-1 to 5-3
overview 5-1

Program uni t def in i t ion 4-2

Program, nul l 5-4

Punctuation symbols 4-5 , 4-6

PUT procedure 10-18

QUIT (load subprocessor) command
3-2

-RANGE and -NORANGE compiler
options 2-11

READ procedure 10-15 to 10-17

Reading arrays 6-14 to 6-19

READLN procedure 10-17

REAL storage format B-3

REAL type 6-6, B-3

Record storage 6-22, B-5

RECORD storage format B-5

RECORD type 6-20 to 6-25, B-5

Records:
empty 6-25
external 6-22
using WITH 6-22, 6-23
var iant 6-23 to 6-25

Recursive procedures and
functions 9-19 to 9-22

Relational operators 7-3 , 7-4

REPEAT statement 8-6

Repetit ive statements:
FOR 8-8, 8-9
REPEAT 8-6
WHILE 8-7, 8-8

RESET procedure 10-6 to 10-10

Rest r ic t ions (See Prime
res t r i c t ions)

ROUND function 6-4, 11-2

HJNOFF u t i l i t y 1-4, 1-5

Second Edition X-12

INDEX

Runtime errors 2-11, 3-3, 3-6,
6-12, 10-5

Scalar data types:
standard 6-2 to 6-10
user-defined 6-10 to 6-14

Scientific notation 4-10, 6-6,
6-7, 10-20, B-3

Scope, definition 4-4

SBG command 3-2

SEG loading utility 1-5, 2-5,
3-1 to 3-8

Separators 4-11

SET operators 6-26, 6-27, 7-4,
7-5

SET storage format B-5

SET type 6-25 to 6-27, B-5

Set, empty 6-26

Severity codes 2-3

-SILENT and -NOSILENT compiler
options 2-12

SIN function 6-6, 11-1

-SOURCE compiler option 2-12

Source listing file 2-1, 2-2,
2-4, 2-5, 2-10, 3-4 to 3-7

Source program file 2-1 to
2-6, 3-2, 3-4, 3-6, 3-7

SQR function 6-4, 11-1

SQRT function 6-6, 11-2

-STANDARD and -NOSTANDARD
compiler options 2-12

Standard constants 4-9

Standard functions (See
Functions)

Standard identifiers 4-8, 4-9

Standard procedures (See
Procedures)

Standard scalar data types 6-2
to 6-10

Standard textfiles (See INPUT
and OUTPUT)

Statements, declaration (See
Declarations)

Statements, executable:
assignment 8-2, 8-3
compound 8-4, 8-5
control 8-5 to 8-15
empty 8-5
function designator 9-14
overview 8-1
procedure 8-3, 8-4
WITH 8-16

Statements, nested (See Nested
statements)

Static variables 6-31

-STATISTICS and -NOSTATISTICS
compiler options 2-12

Storage format:
ARRAY B-5
CHAR B-4
enumerated B-4
FILE B-6, B-7
file control block B-6, B-7
INTEGER B-2
LONGINTEGER (Prime extension)
B-2

LONG-REAL (Prime extension)
B-3

pointer B-8
REAL B-3
RECORD B-5
SET B-5
subrange B-3

X-13 Second Edition

DOC4303-191

Storage:
array capacity 6-16
compatibility D-l to D-8
data formats B-l to B-8
dynamic 6-32
illustrations B-l to B-8
in other languages D-l
record capacity 6-22

Strings (See Character strings)

Structured data types 6-14 to
6-31

Switches, compiler (See
Compiler switches)

Terminal I/O 6-29, 6-30, 10-2
to 10-6

Text editors, Prime 1-4, 1-5,
10-6, 10-8 to 10-10

TEXT type 6-29, 10-10

Textbooks, Pascal instruction
1-1

Subprograms, external (See
External subprograms)

Subprograms:
(See also Procedures and
functions)

defined 4-2, 9-1
external 9-15 to 9-19
forward 9-14, 9-15
from libraries 9-19
recursive 9-19 to 9-22
written in other languages
9-18, D-l to D-8

Subrange storage format B-3

Subrange type 6-12 to 6-14,
B-3

Subroutines 1-5, 9-19

SUCC function 6-10 to 6-12,
11-3, 11-4

Suffix:
executing file 3-7
filename conventions 2-5, 3-2
to 3-4, 3-7

loading procedure 3-2 to 3-4

Suppressing error messages 2-8,
2-12

Switches (Prime extension):
-INTERACTIVE 10-4 to 10-6,

A-2, B-6
-TTY 10-5, 10-11, 10-14, A-2

Textfiles:
closing 6-30, 10-7, 10-12,

10-23, A-4
defined 6-29, 10-8
opening 6-30, 10-6 to 10-14
standard INPUT 4-9 , 6-31,

10-5, 10-10, 10-11, 10-16,
10-17, 10-22,

standard OUTPUT 4-9, 6-31,
10-13, 10-14, 10-18, 10-22,
10-23, A-4

TRUNC function 6-4, 11-2

-TTY switch (Prime extension)
10-5, 10-11, 10-14, A-2

TYPE declarat ion 5-6, 5-7

Types (See Data types)

Unconditional GOTO statement
8-14, 8-15

Underscores and dol lar signs in
i den t i f i e r s 4-8 , A-3

UNPACK and PACK procedures
(Prime r e s t r i c t i ons) 9-12,

A-5

-UPCASE compiler option 2-13

User-defined i d e n t i f i e r s 4-8

User-defined scalar data types
6-10 to 6-14

Second Edition X-14

	Title Page
	Update Instructions
	i
	ii
	iii
	v
	vi
	vii
	viii
	ix
	1-3
	1-4
	2-3
	2-4
	2-7
	2-8
	2-11
	2-12
	2-13
	2-14
	4-5
	4-6
	4-9
	4-10
	6-1
	6-2
	6-9
	6-10
	6-17
	6-18
	7-1
	7-2
	7-3
	7-4
	7-7
	7-8
	8-3
	8-4
	9-9
	9-10
	9-11
	9-12
	9-17
	9-18
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-11
	10-12
	10-23
	10-24
	11-1
	11-2
	11-5
	A-3
	A-4
	B-1
	B-2
	B-7
	B-8
	D-1
	D-2
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	X-14

