UPDATE PACKAGE

UPD4303-192

for

PASCAL REFERENCE GUIDE, DOCA303-191

June 1983

This Update Package, UPD4303-192, is Update 1 for the December 1982
Edition of the Pascal Reference Guide, DOCA303-191. This package
contains 264 pages. A list of effective pages appears on the next

page.

Changes made to the text since the last printing are identified by
vertical bars in the margin. Change bars with numbers identify new
Pascal features of Software Release 19.2. Change bars without numbers
identify documentation corrections and clarifications.

Copyright © 1983 by Prime Computer, Incorporated
Technical Publications Department

500 Old Connecticut Path

Framingham, MA 01701

The information ocontained on these updated pages is subject to change
without notice and should not be construed as a ocommitment by Prime
Computer Corporation. Prime Computer Corporation assumes no
responsibility for any errors that may appear in this package.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.
PRIMENET, RINGNET, Prime INFORMATION and THE PROGRAMMER'S CQOMPANION are
trademarks of Prime Camputer, Inc.

=

(Pages with changes, enclosed with this package, are underlined.)

Effective Pages for the Pascal Reference Guide at Software Release

19.2.

Pages Pages
ii tov 8-1 to 8-2
vi to ix 8-3
x to x1ii 8-4 to 8-16
1-1 to 1-2 9-1 to 9-8
1-3 9-9 to 9-9A
1-4 to 1-6 9-10 to 9-11
9-12
2-1 to 2-2 9-13 to 9-17
2-3 9-18 to 9-18A
2-4 to 2-6 9-19 to 9-22
2-7
2-8 to 2-10 10~-1
2-11 10-2 to 10-3
2-12 to 2-13 10-4
2-14 10-5 to 10-5A
2-15 to 2-17 10-6 to 10-10
10-11 to 10-12
3-1 10-13 to 10-23
3-2 10-24
3-3 to 3-8
11-1
4-1 to 4-4 11-2 to 11-4
4-5 11-5
4-6 to 4-8
4-9 A1 to A3
4-10 A-4 to A-4A
4-11 A-5
4-12
Bl
5-1 to 5-3 B-2 to B-7
5~4 B-8 to B-9
5-5 to 5-15
D-1
6-1 to 6-2 D=2
6-3 to 6-8 D-3 to D-8
6-9 D-9
6-10 to 6-13
6-14 to 6-14L X~1 to X-16
6-15 to 6-16
6-17 to 6-17A
6-18 to 6-33
7-1
7-2 to 7-4
7-5 to 7-6
7-7 to 7-7A

7-8

Pascal Reference Guide

DOC4303-191

Second Edition

by
A. Paul Cioto

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 19.1 (Rev. 19.1).

Prime Computer, Inc.
500 Old Connecticut Path
Framingham, Massachusetts 01701

COPYRIGHT INFORMATION

The information in this document is subject to change without notice

and should not be construed as a commitment by Prime
Corporation.
any errors that may appear in this document.

Computer
Prime Computer Corporation assumes no responsibility for

The software described in this document is furnished under a license

and may be wused or
license.

Copyright © 1982 by
Prime Computer, Incorporated
500 0ld Connecticut Path
Framincham, Massachusetts 01701

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET, RINGNET, PRIME INFORMATION, PRIMACS, MIDASPLUS, and
PROGRAMMER'S QOMPANION are trademarks of Prime Computer, Inc.

HOW TO ORDER TECHNICAL DOCUMENTS

U.S. Customers Prime Employees

Communications Services
MS 15-13, Prime Park
Natick, MA 01760

(617) 655-8000 X4837

Software Distribution
Prime Computer, Inc.

1 New York Ave.
Framingham, MA 01701

(617) 879-2960 X2053, 2054

Customers Qutside U.S.

Contact your local Prime
subsidiary or distributor.

PRIME INFORMATION

Contact your Prime
INFORMATION dealer.

copied only in accordance with the terms of such

THE

PRINTING HISTORY — PASCAL REFERENCE GUIDE

Edition Date Number Software Release
First Edition October 1980 IDR4303 17.6
Update 1 December 1980 PTU2600-080 18.1
Update 2 July 1982 PTU2600~086 19.0
Second Edition December 1982 DOC4303-191 19.1

This edition is a complete revision of IDR4303. It

incorporates update material up to and including software
release 19.1, corrects all known errors, and has been revised
for clarity.

Changes made to the text since the last printing have been
indicated with change bars in the margin. Change bars with
numbers indicate technical changes. Those without numbers
indicate rewrites for clarification or additional information,
Appendixes A and D are new.

SUGGESTION BOX

All correspondence on suggested changes to this document should be
directed to:

A, Paul Cioto

Technical Publications Department
Prime Computer, Inc.

500 0l1d Connecticut Path
Framingham, Massachusetts 01701

iii

Contents

ABOUT THIS BOOK xi

PART I — OVERVIEW
1 INTRODUCTION TO PRIME PASCAL

The Pascal Language

Prime Pascal

Contents of This Book
Related Documents

Interface to Other Languages

iy
(o)W S S 3 |G]

AND EXEQUTING PROGRAMS

2 USING THE PASCAL (OMPILER

Introduction 2-1
Invoking the Compiler 2-2
Compiler Error Messages 2-2
Filename Conventions 2-4
Compiler Options 2-6
Compiler Option Abbreviations 2-13
Compiler Switches 2-16

3 LOADING AND EXECUTING PROGRAMS
Loading Programs 3-1
Executing Programs 3-7
PART III - PRIME PASCAL LANGUAGE REFERENCE

4 PASCAL LANGUAGE ELEMENTS

Definitions 4-2
Pascal Character Set 4-4
Keywords 4-7
Identifiers 4-7

Numeric Constants
Character-strings

Declarations and Statements

Line Format

Comments, Blanks, and Ends of Lines

5 PASCAL PROGRAM STRUCTURE

Program Heading
The Block
Declaration Part
LABEL
CONSTANT
TYPE
VARIABLE
PROCEDURE and FUNCTION
Executable Part
A Program Example

6 DATA TYPES

Scalar Data Types
Standard Scalar Data Types
INTEGER
LONGINTEGER
REAL
LONGREAL
BOOLEAN
CHAR
User—-defined Scalar Data Types
Enumerated
Subrange
Structured Data Types
The ARRAY Type
The RECORD Type
The SET Type
The FILE Type
TEXT
The Pointer Type

7 EXPRESSIONS

Operands

Operators
Arithmetic Operators
Relational Operators
SET Operators
BOOLEAN Operators
Integer Operators

Operator Precedence

vi

5-1
5-3
5-4
5-4
5-6
5-6
5-7
5-9

5-11

7-1
7-2
7-2

7-5
7-6
7-7
7-1

8 STATEMENTS

Summary of Statements
Assignment Statement
Procedure Statement
Compound Statement
Empty Statement
Control Statements
Repetitive Statements
REPEAT
WHILE
FOR
Conditional Statements
IF
CASE
Unconditional Statement
GOTO
WITH Statement

9 PROCEDURES AND FUNCTIONS

Parameters

Procedures

Functions

Forward Procedures and Functions
Externmal Procedures and Functions
Recursive Procedures and Functions

10 INPUT AND OUTPUT

Inputting and Outputting Data
at the Terminal
Inputting and Outputting Data
with PRIMOS Files
Creating and Using Input
Data Files
The RESET Procedure
Creating and Using Output
Data Files
The REWRITE Procedure
I/0 Procedures and Functions
Input File~handling Procedures
GET
READ
READLN
Output File-handling Procedures
PUT
WRITE
WRITELN
BOOLEAN Functions
EOF
FOLN

vii

I
HoONAAULTO W

|
o

=
o

10-6

10-6
10-7

10-11
10-11
10-14
10-15
10-15
10-15
10-17
10~18
10-18
10-18
10-22
10-22
10-22
10-23

Auxiliary Procedures 10-23
PAGE 10-23
CLOSE 10-24

11 STANDARD FUNCTIONS

Arithmetic Functions 11-1
ABS 11-1
SOR 11-1
SIN 111
Qos 11-1
EXP 11-2
IN 11-2
SQRT 11-2
ARCTAN 11-2

Transfer Functions 11-2
TRUNC 11-2
ROUND 11-2

Ordinal Functions 11-3
ORD 11-3
CHR 11-3
SuCC 11-3
PRED 11-4

BOOLEAN Functions 11-5
ODD 11-5
EOF 11-5
EOLN 11-5

APPENDIXES

A SUMMARY OF PRIME EXTENSIONS
AND RESTRICTIONS

Prime Extensions A-1
Prime Restrictions A-5

B DATA FORMATS

Overview B-1
INTEGER Type Data B-2
LONGINTEGER Type Data B-2
Subrange Type Data B-3
REAL Type Data B-3
LONGREAL: Type Data B-3
CHAR Type Data B-4
BOOLEAN Type Data B-4
Enumerated Type Data B~-4
ARRAY Type Data B-5
RECORD Type Data B-5
SET Type Data B-5
FILE Type Data B-6

Pointer Type Data B-8

viii

C ASCII CHARACTER SET

Prime Usage

Special Characters

Keyboard Input

D INTERFACING PASCAL TO OTHER LANGUAGES

Overview

Interfacing INTEGER, BOQLEAN,

and Enumerated

Interfacing LONGINTEGER

Interfacing REAL

Interfacing LONGREAL
Interfacing CHAR and ARRAY

OF CHAR

Interfacing Pointer

Interfacing SET

Interfacing RECORD

INDEX

ix

C-1
C-2
C-2

D-1

D-3
D4

D-5
D-5
D-6

D-7
D~7

X-1

INTRODUCTION TO PRIME PASCAL

Part IT — Compiling, Loading, and Executing Programs

Chapter 2 provides information on the use of Prime's Pascal
compiler, including compiler options.

Chapter 3 provides information on loading and executing programs
with Prime's SEG utility.

Part ITT — Pascal Lanquage Reference

Chapter 4 provides brief descriptions of Pascal language
elements and of terms used throughout Part III.

Chapter 5 lists the fundamental elements of the Pascal program
structure.

Chapter 6 describes the data types available in Pascal,
including two Prime extension data types called LONGINTEGER and
LONGREAL.

Chapter 7 describes the use of Pascal expressions.
Chapter 8 describes the use of executable Pascal statements.
Chapter 9 describes the use of procedures and functions,

including external procedures and functions, which are declared
with Prime's EXTERN attribute.

e Chapter 10 offers a detailed discussion of how to input and
output data in Prime Pascal.
e Chapter 11 lists standard Pascal functions.
Appendixes
e Appendix A summarizes Prime extensions and restrictions to

standard Pascal. It also references the chapter in which each
extension or restriction is discussed.

Appendix B illustrates how Prime Pascal data types are
represented in storage.

Appendix C lists the ASCII character set, which Prime Pascal
uses.

Appendix D lists guidelines for interfacing Pascal to some of
Prime's other high-level languages.

1-3 Second Edition

DOCA303-191

Error Messades

Pascal compiler error messages, Wwhich were designed to be
self-explanatory, appear on your terminal at compile time, and in the
listing file if one is created. Therefore, the messages are not listed
in this book.

RELATED DOQUMENTS

In addition to the Pascal Reference Guide, you will most likely need
other documents to help you take full advantage of Prime's powerful
utilities, which are separately priced products. These documents are
listed below.

Prime User's Guide

Complete instructions for creating, loading, and executing programs in
Prime Pascal or in most Prime languages, plus extensive additional
information on Prime system utilities for programmers, are found in the

Prime User's Guide. The Prime User's Guide and the Pascal Reference
Guide are both essential to the Pascal programmer.

The Prime User's Guide also contains a complete guide to all Prime
documentation.

Draft Proposal "X3J9/81-093" Progqramming Langquage Pascal

The definitive reference for standard Pascal is The Draft Proposal
"X3J9/81-093" Programming Landquade Pascal. Every installation that
uses Pascal extensively should have a copy of this proposed standard,
which may be obtained from American National Standards Institute, 1430
Broadway, New York, NY 10018.

New User's Guide to EDITOR and RUNOFF

Prime's EDITOR is an interactive line-oriented text-editing utility.
It is used to enter and modify text in the computer. New programs that
do not rely on cards or tapes can be input to the system at a termimal
using EDITOR.

The New User's Guide to EDITOR and RUNOFF contains a complete descrip-
tion of the EDITOR, and describes RUNOFF, Prime's text—-formatting

utility. It also provides a basic introduction to the Prime system for
those with little or no computer experience.

Second Edition 1-4

PASCAL COMPILER

The caret (or arrow) that appears just above the error message points
to the actual error on the line of code. The following is an example
of an error message:

OK, PASCAL TEST.PASCAL
[PASCAL Rev. 19.1]
14 END {main program}

ERRCR 31 SEVERITY 3 BEGINNING ON LINE 14
Missing dot at program end.

When compilation is complete and all the error messages have been
listed on the terminal, the compiler tells you how many errors were
encountered and the maximum severity. For example:

0013 ERRORS (PASCAL-REV. 19.1)
MAXTMUM SEVERITY IS 3

The significance of the severity code is:

Severity Description

1 Warning

2 Error that the compiler has attempted to
correct

3 Uncorrected error (prevents optimization,
code generation, and therefore successful
compilation)

4 Error that immediately halts compilation

A severity 1 or 2 error will not prevent execution of your program, but
the output may be unpredictable.

Error Messages Involving $INCLUDE Files

A $INCLUDE file is a Prime extension. It is an external file that is
compiled with the main program after the $INCLUDE statement. The
$INCLUDE statement is followed by the name of the file to be included.
The format is:

$INCLUDE 'filename’;
$INCLUDE files can hold any legal Pascal code — declarations as well
as executable statements. The files could, for example, contain long

lists of wvariable declarations. (For more information on $INCLUDE
files, see Chapter 5.)

2-3 Second Edition

19.1

18.3

18.0

DOCA303-191

If you compile a program that inserts a $INCLUDE file, and there are
compile~time errors in that file, a special type of error message
format is printed at the terminal:

<line-number > line—of—code
ERROR xxx SEVERITY y BEGINNING ON LINE line—-number IN FILE 'f£ilename"

explanation

line-number The number of the line in the $INCLUDE file where
the error occurred. (Lines of code in $INCLUDE
files are numbered separately, and the numbers are
enclosed in angle brackets in the listing file.)

line-of-code The actual erroneous line of code in the $INCLUDE

file.
XXX The error code number.
y Severity code number.
'filename' The name of the RINCLUDE file,

explanation Description of the error and possible remedies.,

The caret points to the erroneous line of code.
Here is an example of a %INCLUDE file error message:
<23> VARAa : integer;
ERROR 2 SEVERITY 3 BEGINNING ON LINE 23 IN FILE 'test-1'
This item in a variable definition list is
already defined in this block.
The compiler adds the number of errors fram the $INCLUDE file to the

number of errors in the main program, and gives the total number of
errors at the end of compilation.

FILENAME CONVENTIONS

When you cdnpile a program with the PASCAL command, and there are no
severity 3 or 4 errors, the compiler creates an object (binary) file.
Tt also creates a source listing file if the -LISTING option is
specified on the command line. In order for you and the compiler to
identify and compile the source file and create the object and listing
files, the "suffix" conventions, which are described below, should be
used to name these files on Rev, 18 (or higher) systems.

Seoond Edition 2-4

PASCAL (OMPILER

Table 2-1

Options Cammonly Used and Not Commonly Used
(Defaults are underlined.)

Options Commonly Used

Options Not Commonly Used

-BINARY (argument]

-DEBUG and —NODEBUG

-ERRTTY and -NOERRTTY
-LISTING [argument]

-MAP and -NO_MAP

-OPTIMIZE, -OPT1l, —OPT3,
and -NOOPTIMIZE

-RANGE and -NORANGE
—UPCASE

-XREF and -NOXREF

-BIG and -NOBIG

—64V and -32I

-EXPLIST and -NOEXPLIST
—EXTERNAL and —NOEXTERNAL
—FRN and —NOFRN

—-INPUT pathname

-OFFSET and -NOOFFSET

—PRODUCTION and —NOPRODUCTION

—SILENT and -NOSILENT
—SQURCE pathname
—STANDARD and —-NOSTANDARD

—STATISTICS and —NOSTATISTICS

Second Edition

18.2

18.0

DOC4303-191

P -BIG and -NBIG

-BIG and -NOBIG determine the type of code generated for references to
ARRAY or REQORD formal variable parameters in a subprogram.

With -BIG, an ARRAY or RECORD formal variable parameter can become
associated with any ARRAY or REQORD, even if the ARRAY or RECQORD
crosses a segment boundary.

With -NOBIG, an ARRAY or REQORD formal variable parameter can be

associated only with an ARRAY or REQORD that does not cross a segment
boundary.

See ARRAY or RECORD Type Variable Parameters in Chapter 9 for details.

P> -BINARY [argument}

The -BINARY option generates an object (binary) file. If this option
is not given, -BINARY YES will be assumed. The argument may be:

pathname Object code will be written to the file pathname.

YES Object code will be written to the file named
program.BIN, or B_program, in the user's UFD, where
program is the name of the source file. (This is the
default.)

NO No object file will be created. Specified when only a
syntax check or listing is desired.

P -DEBUG and -NODEBUG

The -DEBUG option generates code for Prime's source level debugger.
With -DEBUG, the object file is modified so that it will run under the
debugger. Execution time increases, and the code generated will not be
optimized.

-NODEBUG, the default, causes no debugger code to be generated.

See the Source Level Debugger Guide for information about debugging
programs.

P> -ERRTTY and -NOERRTTY

The -ERRTTY option prints error messages at the user's termimal.
~NOERRTTY suppresses this function.

Second Edition 2-8

PASCAL COMPILER

P> -OPTIMIZE, -OPT1, -OPT3, and -NOOPTIMIZE
These options control the optimization phase of the compiler.

~OPTIMIZE, the default, will cause the object code to be optimized.
Optimized code runs more efficiently than nonoptimized code, but takes
somewhat longer to compile.

The -OPT1 option optimizes less code and generates less efficient code
than -OPTIMIZE, but compilation time is faster than -OPTIMIZE.

The -OPT3 option optimizes more code and generates more efficient code
than -OPTIMIZE, but compilation time is slower than —-OPTIMIZE.

When -NOOPTIMIZE is invoked, optimization does not occur. Execution
time is slowest, and compile time is fastest.

P -PRODUCTION and -NOPRODUCTION

-PRODUCTION produces alternative option-controlling code £for the
debugger.

-PRODUCTION is similar to DEBUG, except that the code generated will
not permit insertion of statement breakpoints. Execution time is not
affected.

—-NOPRODUCTION will cause no production-type code to be generated.

P> -RANGE and —NORANGE

-RANGE checks for out-of-bounds values of array subscripts and
character substring indexes. Error—-checking code is inserted into the
object file. 1If an array subscript or character substring index takes
on a value outside the range specified when the referenced data item
was declared, a runtime error will be generated. Range checking
decreases the efficiency of the generated code.

With -NORANGE, out—-of-bounds values will not be detected. The program
will be more vulnerable to errors, but will execute more quickly.

2-11 Second Edition

19.1

19.1

DOC4303-191

P> -SILENT and —-NQSILENT

-SILENT suppresses severity 1 error messages. Severity 1 error
messages will not be printed at the terminal and will be amitted fram
any listing file. :

~NOSILENT causes severity 1 error messages to be retained.

P> -SOURCE pathname
The -SOURCE option, which is identical to the -INPUT option, is
obsolete and not wuseful. -SOURCE designates the source file pathname
to be compiled:

PASCAL —-SOURCE pathname
It is not useful because it produces the same results as:

PASCAL pathname

pathname must not be designated more than once on the command line,

p> —STANDARD and -NOSTANDARD
The —STANDARD option generates a severity 1 error message when your

code's syntax 1is non—-ANSI standard Pascal. —-NOSTANDARD does not cause
a severity 1 error to be generated.

P -STATISTICS and -NOSTATISTICS

The —-STATISTICS option lists compilation statistics at the terminmal
after each phase of compilation. For each phase the list contains:

DISK Number of reads and writes during the phase, excluding
those needed to obtain the source file

SECONDS Elapsed real time

SPACE Internal buffer space used for symbol table, in 16K byte
units

PAGING Disk I/O time used
CPrU CPU time used in seconds, followed by the clock time
when the phase was completed

—NOSTATISTICS causes no statistics to be printed.

Second Edition 2-12

PASCAL. (QOMPILER

P> -UPCASE

The -UPCASE option causes the compiler to map lowercase variables to
uppercase. With -UPCASE, the compiler does not distinguish between
lowercase variables and uppercase variables, except within character
strings.

p —XREF and —NOXREF

The -XREF option appends a cross-reference to the source listing. A
cross-reference lists, for every variable, the number of every line on
which the variable was referenced.

-NOXREF causes no cross-reference listing to be generated.

P 64V and -32I

These determine the addressing mode to be used in the object code.
-64V is a segmented virtual addressing mode for 16-bit machines. -32I
is a segmented virtual mode, which takes maximum advantage of the
32-bit architecture of Prime's more advanced models (P450 and up).

(OMPILFR OPTION ABBREVIATIONS

Most compiler options have abbreviations that are accepted by the
compiler. For example, instead of typing -LISTING on the command line,
you could simply type -L. A list of Prime's recommended abbreviations,
along with a summary of options in straight (nonpaired) alphabetical
order, is given in Table 2-2.

2-13 Second Edition

18.2

18.2 |

18.0 |

18.3 |

18.2 |

18.0 |

18.3 l

DOC4303-191

Table 2-2

Summary of Compiler Options and Abbreviations

(Defaults are underlined.)

Option Abbreviation Significance

-BIG -BIG Generate boundary-spanning code

—BINARY -B Create object file

—DEBUG -DE Generate debugger code

—ERRTTY —ERRT Print error messages at terminal

-EXPLIST -EXP Generate an expanded source
listing

—EXTERNAL —EXT Generate external procedure
definitions

—-FRN —FRN Generate floating-point round
instructions

-INPUT -I Designate source file

~LISTING -L Create source listing

-MAP -MA Print listing file with map

-NOBIG -NOB Don't generate boundary-spanning
code

—NODEBUG —NOD Don't generate code for debugger

~NOERRTTY —~NOERRT Don't print error messages at
terminal

—NOFRN —NOFRN Don't generate FRN instruction

-NO_MAP -NOM Don't include a map in listing
file

—NOOFFSET ~NOOF Don't append an offset map to
source listing

~NOOPTIMIZE ~NOOP Don't optimize object code

Second Edition

2-14

PASCAL LANGUAGE ELEMENTS

Table 4-1
Pascal Punctuation Symbols

Symbol Description
+ Addition
Identity
Set union
- Subtraction

Sign—-inversion
Set difference

* Multiplication’

Set intersection
/ Division (real)
= Equal to

Set equality

Type identifier and type separator
Constant identifier and constant

separator

< Less than

> Greater than

[Subscript list or set constructor
delimiters

. Decimal point

Record selector
Program terminator

' Parameter or identifier separator

Variable name and type separator
Label and statement separator

Statement separator
Record field separator
Declaration separator

-e

File or pointer variable indicator

O Parameter list, identifier list,
or expression delimiters

<> Not equal to
Set inequality

Second Edition

DOC4303-191

Table 4-1 (continued)
Pascal Punctuation Symbols

Symbol Description

<= Less than or equal to
Set inclusion ("is contained in")

>= Greater than or equal to
Set inclusion ("contains")

1= Assignment Operator
.o Subrange Specifier
{} Comment delimiters
18.3 /* */ Comment delimiters (Prime extension)
(* *) Comment delimiters

Character-string delimiter
{apostrophe)

& Bit Integer AND operator (Prime extension)

Bit Integer OR operator (Prime extension)

Second Edition 4-6

Table 4-3

Standard Identifiers

PASCAL LANGUAGE ELEMENTS

Constants
FALSE

Types
INTHEGER
BOOLEAN
Files
INPUT
Directives
FORWARD

Functions

ABS
ARCTAN
CHR
Qs
EOF
EOLN

Procedures

CLOSE*
DISPOSE
GET
NEW

TRUE

LONG INTEGER*

CHAR

OUTPUT

EXTERN*

ROUND

PAGE
BT

READLN

* Prime extension identifiers

LONGREAL*

SOR
ODD SQRT
ORD succ
PRED TRUNC

Second Edition

[19.1

19.1

19.1

19.1]

19.1

DOCA303-191

There are two ways of expressing real and longreal numbers:

1.

In decimal notation, the number is expressed by an optional
sign, a whole number part, a decimal point, and a fractional
part. There must be at least one digit on each side of the
decimal point.

In scientific notation, the number is represented by a wvalue,
followed by the letter E or D, which is followed by an
exponent. The letter E is used if the number is REAL. The
letter D is used if the number is LONGREAL. The value consists
of an optional sign, one or more digits, and an optional
decimal point and fractional part. The exponent must be an
integer with an optional sign. The letter E or D is read as
"times 10 to the power of". ‘This is a convenient way to
represent very large or very small numbers.

No comma may appear in a number., Examples:

Valid Integer/Longinteger Invalid Integer

23

-32,768 (No comma allowed)

-100

+40000 (longinteger)

Valid Real/Longreal Number Invalid Real Number
-0.1 .1 (Must be a digit to

the left of the decimal

1E6 (1000000) point)

SE-8 (0.00000005) 1. (Must be a digit to the

right of the decimal point)

-87.35E+15 (-87350000000000000)

-7.0E-6 (~0.000007) -8.0E-6.3 (Only whole number

exponents allowed)

2.1D01 (longreal)

1,234D+20 (No comma allowed)

1.234567 (longreal)

Seocond Edition 4-10

Data Types

Every constant, variable, function, or expression must have a data
type. The data type determines the set of values a variable may assume
or a function or an expression may generate. The data type also
determines which operations may be performed on the values and how
these values are represented in storage.

This chapter summarizes the data types available in Prime Pascal
— standard Pascal data types as well as Prime extensions. There are
two Prime extension data types, LONGINTEGER and LONGREAL. Each of
these data types is described later in this chapter.

Figure 6-1 illustrates all of the data types in Prime Pascal. The
internal representations of data types are illustrated in Appendix B,
Appendix D offers gquidelines for interfacing Pascal data types with
those of other languages. For more information about Pascal data
types, consult a commercially available text.

SCALAR DATA TYPES

Scalar data types are the fundamental data types in Pascal. All other
data types must be built fram scalar data types.

Each scalar data type has a group of distinct values, called constants,
which have a defined 1linear ordering. Thus, each scalar type is
ordered. Any two of these constants can be compared by asking if one
is less than, equal to, or greater than the other., The total number of
constants in a type is called the cardinmality of that type.

6-1 Second Edition

I 19.1

19.1 |

19.1 |

19.1

DOC4303-191

DATATYPES
SCALAR STRUCTURED POINTER

STANDARD USER-DEFINED ARRAY RECORD SET FILE

/\

INTEGER REAL BOOLEAN ENUMERATED SUBRANGE

LONGINTEGER ¥ LONGREAL * CHAR

The Hierarchy of Data Types in Prime Pascal
*Prime extensions are flagged with an asterisk.

Figure 6-1

Scalar data types are divided into two classes: standard scalar data
types and user—-defined scalar data types. The standard scalar types
are the predefined, built-in data types provided by Pascal. The
user—-defined scalar types are data types that you create and define in
a program,

Standard Scalar Data Types
There are four standard scalar types —— INTHGER, REAL, BOOLEAN, and

CHAR — plus two Prime extension scalar types called LONGINTEGER and
LONGREAL,

Second Edition 6-2

DATA TYPES

~ The following program compares all of the printable characters (decimal
160-255) in Prime's character set, using relational operations:

PROGRAM Karacter;

VAR
I : INTHGER;
BEGIN
FOR I := 160 TO 255 DO
BEGIN
WRITE (CHR(I));
IF ((CHR(I) >= 'A') AND (CHR(I) <= 'Z')) THEN
WRITELN(' This is a capital letter')
ELSE
IF ((CHR(I) >= 'a') AND (CHR(I) <= 'z')) THEN
WRITELN(' This is a small letter')
ELSE
' & IF ((CHR(I) >= '0') AND (CHR(I) <= '9')) THEN
WRITELN(' This is a printable number')
ELSE
WRITELN(' This is punctuation or other character')
END
END.

Caution

Prime's character set is represented by the decimal numbers 128
to 255. You should not use the CHR function on integers less
than 128 or greater than 255. Any such attempt will produce
unpredictable results.,

To indicate a constant of the (HAR type, place an apostrophe (a single
quote) on each side of the character. To indicate an apostrophe, write
it twice. Examples:

IAI

rem {Single quote}

v {Blank is considered a printable character,}

Note

A constant of the QIAR type is always a single character.

Constructs such as '123' or 'STRING' are not constants of this
r type but are constants of a more complex type called ARRAY OF

CHAR or "string", which is described later in this chapter.

6~-9 Second Edition

DOCA303-191

As was explained earlier, each character corresponds to its own
internal integer, which is called the ordinal number of the character.
Using the standard function ORD — the opposite of CGHR — you can get a
character's ordinal number. For example:

ORD('A') yields 193 {Octal value 301}
ORD('a') yields 225 {Octal value 341}
ORD('1l"') yields 177 {Octal value 261}

There are two more standard functions particularly useful for
processing character data — PRED (predecessor function) and SUCC
(successor function). Given a value, PRED produces the next lesser
value and SUCC gives the next greater value. For example:

PRED('E') yields 'D’ {The predecessor of 'E' is 'D'}

SUCC('E') yields 'F' {The successor of 'E' is 'F'}

PRED(8) vyields 7 {The predecessor of 8 is 7}

SUCC(8) yields 9 {The successor of 8 is 9}

PRED(ORD('G')) yields 198 {The predecessor of G's ordimal
value is 198}

SUCC(ORD('F')) yields 199 {The successor of F's ordimal
value is 199}

Functions are described in detail in Chapter 11.

The relational operators =, <, &, >, <=, and >= can be used with all
character constants. For more information, see Chapter 7.

User—defined Scalar Data Types

There are two user-defined scalar types —— enumerated and subrange.

The Enumerated Types: An enumerated type defines an ordered set of
values by listing these values.

To create an enumerated type, use the following type definition:

TYPE type-identifier = (identifier-1, identifier-2 [,identifier-3]...);

Second Edition 6—10

DATA TYPES

Array of Characters: A line of text can be represented as an array of
characters. This particular array is called ARRAY OF CHAR or "string".

A typical VAR declaration of an ARRAY OF CHAR would be:

VAR
A : ARRAY[1..60] OF CHAR;

The identifier "A" is an array with 60 character elements. A[l] is the
first character, and A[60] is the last. Any character string value
assigned to A must have 60 characters.

Here is an example of how an ARRAY OF CHAR (string) type is declared
within a TYPE declaration:

TYPE
STRING1 = ARRAY[1..10] OF CHAR;

Two more examples follow:

TYPE
STRING1 = ARRAY[1..10] OF CH2R;
VAR
STRING2 : STRING];
BEGIN
STRING2 := 'ABCDEFGHILJ';
STRING2 := 'AB! {This is an invalid assignment. }
{The string must contain 10}
{characters.}
END.

Here is another example:

TYPE

LENGTH = 1..30;

STRING30 = ARRAY [LENGTH] OF CHAR;
VAR

ALPHA : STRING30;

I : LENGTH;
BHGIN

FOR I :=1 TO 30 DO

READ (ALPHA[I])

END.

Note
Although Prime Pascal does not support the keyword PACKED in

type definitions, an ARRAY OF CHAR is always stored as a packed
ARRAY OF CHAR on Prime computers.

6-17 Second Edition

19.1

DOC4303-191

Array of Characters (the Prime Extension): At Rev. 19.1, the ARRAY OF
C(HAR was enhanced into a Prime extension that makes reading of these
arrays much easier.

On Rev. 19.1 (or higher) systems, you can read an array of characters
as one unit, instead of reading one character at a time. For example,

Prime's ARRAY OF CHAR function allows you to declare and read character
arrays like this:

PROGRAM Primearray;
VAR
A : ARRAY[1..10] OF CHAR;
B : ARRAY[1..60] OF CHAR;
BEGIN
READLN(A) ;
READLN (B)
END.

Previously, reading was done one character at a time within a loop:

BHGIN
FOR I := 1 TO 10 DO
READ(A[I]);
FOR I :=1 TO 60 DO
READ(B[I])
mD.

You can still use loops to read an ARRAY OF CHAR; however, it is
easier and more efficient to use the Prime extension.

Note

If you do not have a Rev. 19.1 (or higher) system, then you
must use the loops.

You can read or write a Prime character array up to 256 characters
long.

Consider the following:

VAR

A : ARRAY([1..30] OF CHAR;
BEGIN

READLN(A) ;

With READLN, if fewer than 30 characters are typed in, the remaining
characters will be blank-filled, If more than 30 characters are typed
in, only the first 30 characters will be assigned. You will not be
warned that you have typed in extra characters.,

Second Edition 6-18

Expressions

An expression is a single operand or a combimation of operands and
operators that are evaluated to produce a value.

OPERANDS

An operand may be any of the following expressions:

A variable

An unsigned or signed number

A character string

A constant identifier

A function designator (explained in Chapter 9)
NIL

A set

7-1 Second Edition

DOC4303-191

Here are some examples of valid operands:
15
(x+y+2)
SIN (x+Y)
[RED, C, GREEN]
(1, 5, 10..19, 23]
NOT P
I*J+1

-N

QPERATORS

Operators modify an operand or combine two operands. Operators can be
classified as arithmetic, relational, set, Boolean, or integer.
(Integer operators are Prime extensions.,)

Arithmetic Operators

An arithmetic operator specifies computation to be performed on its
operands to produce a single numeric value. Table 7-1 lists the binary

and unary arithmetic operators and the data types of operands and
results.,

Second Edition 7-2

Table 7-1

Arithmetic Operators

EXPRESSIONS

Binary Operators

Type of Operands

Type of Result

+ (add)
- (subtract)
* (multiply)

/ (divide)

DIV (divide with
truncation)

MOD (modulus or

remainder)

Unary Operators

+ (identity)
- (sign-inversion)

INTBGER/LONG INTEGER
REAL/LONGREAL

INTEGER/LONG INTHGER
REAL/LONGREAL

INTHEGER or
LONGINTHGER

INTEGER or
LONGINTEGER

INTHGER/LONG INTEGER
REAL/LONGREAL

INTEGER/LONG INTEGER
if both operands are
INTEGER/LONG INTEGER;
otherwise REAL/IONGREAL

REAL/LONGREAL

INTEGER/LONG INTEGER

INTBGER/LONG INTEGER

Same as operand

Relational Operators

The relational operators are used to compare values of data types —

scalar, ARRAY OF CHAR

(string),

pointer,

or SET. In any given

comparison, both operands must be of the same type, except that INTEGER
can be compared with LONGINTHGER, and REAL with LONGREAL. The result

of the comparison is a BOOLEAN value, TRUE or FALSE.

Table 7-2 lists

the legal relational operators and data types of operands.

Second Edition

19.1

|19.l

DOC4303-191

Table 7-2
Relational Operators
Operator Operation Type of Operands
= equality SET, scalar, pointer, or
<> inequality ARRAY OF CHAR
< less than scalar or ARRAY OF CHAR
> greater than
<= less or equal scalar or ARRAY OF CHAR
<= set inclusion SET
("is contained
in")
>= greater or equal scalar or ARRAY OF CHAR
>= set inclusion SET
("contains")
IN set membership first (left) operand is any
scalar type (except REAL and
19.1 | LONGREAL) , second (right)
| operand is a set of that type

Here are some examples of relational operators.

First, let

X

y @
then

= ['A', 'D', 'C', 'B']

[lAl’ 'EI]

x=['A', 'B', 'C', 'D'] {true }

y<&=x
y &Ox

'B' IN x

Second Edition

{false}

{true }

{true }

EXPRESSIONS

Integer Operators

The integer operators & and ! are Prime extensions. They perform
Boolean 2AND and OR operations on integers respectively. These
operators also work on longintegers. For example, if you wanted to
perform AND and OR operations on the two numbers 10 and 12, you could
say:

VAR
A,B,C,D : integer;
BEGIN
A
B
C {AND operation}
{OR operation}

es 26 s e

we we wo wo

At the machine level, the two binmary numbers that stand for decimal 10
and 12 are 1010 and 1100 respectively. (The 12 leading zeros are
anitted.) During the AND and OR operations, the digit 1 means TRUE and
0 means FALSE. The first digit of 1010 is compared with the first
digit of 1100, and so on, to produce new binary (and hence decimal)
nunbers C and D. The machine, therefore, calculates:

1010 AND 1100 = 1000 {decimal 8}
1010 OR 1100 = 1110 {decimal 14}
cC=28
D =14

Integer operators can be useful when you need a lot of Boolean TRUE and
FALSE values or "switches" that can be set to 1 (TRUE) or 0 (FALSE) in
the internal binary representation of any decimal number.

OPERATOR PRECEDENCE

The precedence among operators determines the order in which
expressions are evaluated. The precedence of operators is as follows:

1. Operations in parentheses Highest precedence
(Gone first)

2. NOT, unary - and +

3. * /, DIV, MOD, AND, &

4. +' =~y OR’ !

5. =, &, &, > &=, >=, IN Lowest precedence
(done last)

7-7 Second Edition

DOC4303-191

Order of Evaluation

When there are several operations at the same level of precedence, the
operations are performed from left to right.

Parentheses may be used to override the normal evaluation order. An
expression enclosed in parentheses is treated as a single operand, and
is evaluated first. When expressions are contained within a nest of
parentheses, evaluation proceeds from the innermost set to the
outermost set (inside out).

For example:

7+A*2-5DIV3+A {Numbers below the operators
indicate the order in which
2 1 4 3 5 the operations are performed.}

((7+A)*2-5)DIV3+A

1 2 3 4 5

Second Edition 7-8

STATEMENTS

The following are some guidelines for using assignment statements:

e The variable or function identifier and the expression must be
of compatible types.

® Neither the variable/function identifier nor the expression
should be a FILE type or a structured type with a FILE element.

e The variable or function identifier can be of type REAL and the
expression can be of type INTEGER; however the converse is not
possible. (You can assign an integer to a real, but not a real
to an integer unless the TRUNC function is used.)

e The variable or function identifier can be of type LONGINTHGER
and the expression can be of type INTEGER, but the converse may
cause your program to fail, (You may assign an integer to a
longinteger, but a longinteger will be truncated when assigned
to an integer.) This rule also applies to REAL and LONGREAL for
the same reason.

e 2Any element, group of elements, or expression that is of a
particular SET type must be assigned to a variable or function
identifier of the same SET type.

e The variable or function identifier and expression can be type
ARRAY OF CHAR (string) as 1long as both arrays have the same
number of elements.,

@ The variable or function identifier and expression can be
subranges of each other.

PROCEDURE STATEMENT

A procedure statement activates the execution of a procedure. A
procedure is a subprogram, which is declared in the main program.

The format of the procedure statement is:
procedure-identifier [(parameter-list)];

The procedure—identifier is the name of the procedure. When the
procedure statement is encountered in the main program, the procedure
is executed. The parameter-list is optional. If you want to pass
values to and from the main program and the procedure, you would use
parameters. The parameter-~list is enclosed in parentheses, and the
parameters are separated by commas.

8-3 Second Edition

19.1

DOC4303-191

Here are some examples of procedure statements:
PRINTHEADING;
TRANSFOSE (A, N, M) ;
BISECT(FCT, -1.0, +1.0, X);

For more information on procedures and functions, including external
procedures and functions, see Chapter 9.

QOMPOUND STATEMENT

A compound statement is a sequence of statements separated by
semicolons. The general form of a compound statement is:

BEGIN
statement-1 ; statement-2;...[statement-n]
END;

The keywords BEGIN and END must designate the start and the end of the
sequence of a compound statement. They are not statements themselves.
BEGIN and END should not be used on a single statement. statement-l,
statement-2, etc., can be any Pascal statements. A compound statement
can appear anywhere a single statement is allowed.

Example 1:

nunn
16 3¢

s o8 e

PP

Example 2:

IF FLAG = 1 THEN
BEGIN
QOUNTER := 0;
READ (CHARACTER);
WHILE (CHARACTER <> BLANK) DO
BEGIN
QOUNTER := CQOUNTER + 1;
READ (CHARACTER)
END;
WRITELN (' THE NUMBER OF CHARACTERS = ', COUNTER)
END
ELSE
FLAG := 0;

Second Edition 8-4

PROCEDURES AND FUNCTIONS

Example 5:

VAR
I, J : INTEGER;

PROCEDURE ADD2 (PROCEDURE Al) ;

BEGIN {procedure ADD2}
Al;
Al

END;

PROCEDURE ADD];

BEGIN {procedure ADD1}
I :=1+1
END;
PROCEDURE CALLPROC (PROCEDURE X (PROCEDURE Y); PROCEDURE %) ;
BEGIN {procedure CALLPROC}
Z;
X(2)
END;

BEGIN {main program}
I :=0;
CALLPROC(ADD2, ADD1)

END. {I = 3}

PROCEDURES

A procedure is a user—-written independent program unit that performs a
set of operations. A procedure must be declared in a procedure
declaration, a forward procedure declaration, or an external procedure
declaration before the procedure can be called by a procedure
statement.

Procedure declarations are discussed below. Forward and extermal
procedure declarations are discussed later in this chapter.

The external procedure declaration is a Prime extension to standard
Pascal.

Procedure Declarations

A procedure declaration defines and names a procedure. The form of a
procedure declaration is:

PROCEDURE identifier [(formal-parameter-list)]; block;

The keyword PROCEDURE begins a procedure declaration. The identifier
is the name of the procedure. The list of formal parameters, if any,
enclosed in parentheses, specifies the name of each formal parameter
followed by its type—identifier., If you choose to use them, parameters
can be passed by value or by reference to the subprogram. Parameters
are discussed earlier in this chapter.

9-9 Second Edition

19.1

DOC4303-191

Except in forward or extermal declarations, the procedure heading
described above is immediately followed by the procedure block.

A procedure block has the same general form as a program block., It may
contain declarations for 1labels, constants, types, variables,
procedures, and functions and a sequence of executable statements
surrounded by a BEGIN and END pair. However, the procedure block ends
with a semicolon instead of a period.

Unlike a function, the name of a procedure must not be assigned a
value. Therefore, do not specify a data type for a procedure itself.

Note

Identifiers and labels declared in the main program are global.
That is, they can be referenced throughout the entire program,
including these procedures (or functions), so long as the
procedures are contained within the main program (are not
external). However, those identifiers and labels applying only
to a particular procedure (or function) but not to the program
as a whole should be declared within that procedure (or
function). These identifiers and labels are local.

Invoking Procedures

A procedure statement invokes, or calls, a procedure. A procedure
statement has the form:

procedure-identifier [(actual-parameter-1 [,actual-parameter-2}...)]
The procedure—identifier is the name of the called procedure. When the
called procedure has one or more formal parameters defined in its

heading, the procedure statement must contain the corresponding actual
parameters along with the procedure-identifier.

Second Edition 9-10

PROCEDURES AND FUNCTIONS

Example 1:

PROGRAM TEST;

PROCEDURE INDATA;...BHGIN...END;
PROCEDURE SORT';...BHGIN...END;
PROCEDURE (UTDATA;...BEGIN...END;
{Main program begins here.}
BEGIN

INDATA;

SORT;

CUTDATA
END.

Example 2:

PROGRAM (URVE (INPUT, QUTPUT) ;
VAR

X, Y : REAL;

I : INTEGER;

PROCEDURE PLOT(A, B: REAL; J: INTEGER); {A, B, & J are formal value
. parameters. }

BEGIN...END;
PROCEDURE ENDPLOT;

BEGIN...END;
{Main program begins here.}
BEGIN
X := 0.0;
Y := 1.0 + SIN(X);
READLN(I);
I:=1+ 2;
PLOT(X, ¥, I); {X, ¥, and I are actual parameters.}

9-11 Second Edition

DOC4303-191

Standard Procedures

A standard procedure, denoted by a predefined identifier, is a built-in
procedure supplied by the Pascal language.

Prime Pascal supports the following standard procedures:

e File Handling Procedures: RESET, GET, REWRITE, PUT, READ,
READLN, WRITE, and WRITELN. (See Chapter 10.)

e I/0 Auxiliary Procedures: PAGE and CLOSE. (See Chapter 10.)

e Dynamic Allocation Procedures: NBEW and DISPOSE. (See Chapter
6.)

Note

The CLOSE procedure is a Prime extension to standard
Pascal.

Use of the standard transfer procedures PACK and UNPACK
in Prime Pascal will generate an error message and cause
your program to fail because PACK and UNPACK are not
supported in Prime Pascal. This is a Prime restriction.

FUNCTIONS

Functions are also user-written subprograms, Here are some
characteristic traits of functions:

® The keyword FUNCTION is used instead of PROCEDURE.

e Similar to a procedure, a function is a subprogram.

e Unlike procedures and standard functions, the names of
user-written functions must represent values. Procedure names

and standard function names cannot represent values.

@ Unlike a procedure, a data type must be specified for the
function itself in the function heading.

A function is an independent program unit that accepts zero or more
parameters to produce a single output value, A function must be
declared in a function declaration, a forward function declaration, or
an external function declaration before the function can be invoked.

Function declarations are discussed below. Forward and external
function declarations are discussed later in this chapter.

The extermal function declaration is a Prime extension to standard
Pascal.

Second Edition 9-12

PROCEDURES AND FUNCTIONS

Using the -EXTERNAI, Option Instead of {$E+}: An alternative to using
the {$E+} switch in the subprogram is to use the -EXTERNAL option every
time you compile the file of subprograms. For example:

PASCAL filename —EXTERNAL

The filename is the name of the file that contains the external
subprograms. (See Chapter 2 for more information on compiling

programs.)

Defining External (Global) Variables with {SE+}: If you want your

external subprograms to reference the variables that are declared in
the calling program, you must use the {$E+} and {SE-} switches in the
VAR declaration of the calling program. For example:

VAR

I, J : INTHGER;
{SE+}

X, Y, Z : INTEGER;
{SE-}

Here is an example of a program that calls an external procedure. It
has one variable, ADDSUM, that is used externally:

PROGRAM File 1;

VAR
I, J : INTHGER;
{SE+}
ADDSUM : INTHGER;
{SE-}

PROCEIURE ADD(A, B : INTHGER); EXTERN;
BEGIN {main program}
I :=23;
J := 45;
ADD(I, J); {externmal procedure is called here}
WRITELN (ADDSUM)
END.

Here is the extermal procedure ADD, which the above program calls,
Notice that the external variable ADDSUM must also be declared in the
subprogram at the top of the file, outside the procedure or function
block:

{SE+}
VAR
ADDSUM : INTHEGER;
PROCEDURE ADD(A, B : INTHGER);
BEGIN
ADDSUM := A+ B
END;

9-17 Second Edition

DOC4303-191

Compiling and Loading Subprograms: Remember that each external
subprogram file must be compiled and loaded separately. After you have
entered SBG's LOAD subprocessor, the main program must be loaded before
the separately compiled subprograms. For more information on
compiling, loading, and executing programs, see Chapters 2 and 3.

External subprogram names, as well as the names of main programs,
cannot be more than 32 characters long.

Caution

Do not define a main program as external., An error message
will result. The following example is invalid:

{SE+}
PROGRAM Main;

Subprograms Written in Other Landuades

Subprograms declared in external procedure or function declarations in
the main program can be written in any Prime high-level language or
Prime Macro Assembly (PMA) language with certain restrictions:

® There must be no conflict of data types for variables being
passed as parameters. For example, a FIXED BINARY(15) in PL/I
is equivalent to an INTHGER in Pascal.

e Programs compiled in either 64V or 32I mode cannot reference or
be referenced by programs compiled in R mode. Programs in 64V
or 321 mode may reference each other.

For more information on interfacing Pascal with other languages, see

Appendix D.

Second Edition 9-18

Input and Output

In Prime Pascal, data can either be input fram your terminmal or be
input from a PRIMOS input data file. Similarly, the output can either
be written out to your terminal or to a PRIMOS output data file,

This chapter explains how to input and output data in Prime Pascal,
using both of these methods.

Throughout this chapter, various built-in I/0 (input/output) functions
and procedures that manipulate data are discussed. These include eight
file-handling procedures (RESET, GET, READ, READLN, REWRITE, PUT,
WRITE, and WRITELN), two BOOLEAN functions (EOF and EOLN) and two
auxiliary procedures (PAGE and CLOSE).

Note

Prime Pascal performs I/0 operations only on data stored in
disk files or data supplied at the terminal.

10-1 Second Edition

DOC4303-191

INPUTTING AND OUTPUTTING DATA AT THE TERMINAL

When you execute a program, and your program requests data at execution
time, it can wait for you to input the data at your terminal. For
example:

PROGRAM Add;
VAR
A, B, C : INTHGER;
BEGIN
READLN(A) ;
READLN(B) ;
C := A+ B;
WRITELN(C)
END.

In the example above, the computer expects you to enter two integers at
your terminal upon execution., ‘The execution would look like this,
where user input is underlined:

OK,

SEG _ADD

30

20

80 {computer writes out result here}

OK,
For more information on executing programs, see Chapter 3.
If you were using READs instead of READLNs in the example above, you
could place the integers on the same line, separated by spaces or a
comma. For example, given the following statements:

READ(X, Y);

Z =X +Y;

WRITELN(Z) ;

your terminal input and execution would look like this:

30 30 80
OK,

A space placed after the 30 and after the 50 signals the end of each
integer. It also tells the computer that each integer has two digits.
Notice that with READs, the computer outputs the sum on the same line
as your input.

Second Edition 10-2

INPUT AND OUTPUT

You can make the computer prompt you for input by putting WRITE or
WRITELN statements in your program. For example:

VAR
A,B,C : INTEGER;
BEGIN
WRITELN('Enter two numbers:');
READLN(A) ;
READLN(B) ;
C := A+B;
WRITELN(C)
END.

Your input and execution would look like this:

OK,
SBG ADD
Enter two numbers:
10
20
30
OK,

If you were using READs on CHAR type data instead of INTEGER or REAL,
you would not put spaces between the input characters, Therefore, with
the following program:

PROGRAM Letters;
VAR
X, ¥, 7 : CHAR;
BEGIN
WRITE ('Enter three letters: ');
READ(X, Y, 2);
WRITELN(X:10, Y, 2)
END.

your input and execution would look like this:

OK,

SEG LETTERS

Enter three letters: PQR PQR
OK,

The 10 in the WRITELN statement formats the output so that nine spaces

are placed before the P, Notice that the WRITE statement prompts you
for input.

10-3 Second Edition

19.1

DOCA303-191

Using Frase and Kill Characters

PRIMOS provides two special character functions called erase and kill.
The erase character (the double quotation mark) erases the immediately
preceding character. For example, if you type 1235 when you wanted to
type 1234, you can correct your mistake by typing the double quote
followed by the correct input:

1235"4

The kill character (the question mark) deletes your entire current
line, For example, if you mistakenly type this:

123456789
and were supposed to type this:
ABCDEFGHI

you can correct your mistake by typing the question mark followed by
the correct input:

123456789 2?ABCDEFGHI

Note

Your System Administrator may have changed the Prime-supplied
erase and kill characters to some other characters. If so,
find out what they are. (You can change them yourself, too.)

How to Use Erase and Kill on Terminal Input: Before Rev. 19.1, use of
Prime's erase and kill characters on input from the terminal was not
possible because each character was assigned to the program as soon as
it was typed. Not only was it too late to use an erase or kill
character, but also an erase or kill character itself was assigned.

Now you can use the erase and kill characters by using the —INTERACTIVE
switch in the RESET statement in your program. For example:

VAR
I, J : INTHGER;
BHGIN
RESET (INPUT, '—-INTERACTIVE');
READLN(I);
READLN(J)
END.

The —INTERACTIVE switch is a Prime extension. When this switch .is
used, you can erase or kill anything on the current line — that is,

before you enter a carriage return. The word -INTERACTIVE must be

enclosed in single quotes.

Second Edition 10-4

INPUT AND OUTPUT

Caution

You can only use READLNs with the —-INTERACTIVE switch. Do not
use READs, A READ will not work with -INTERACTIVE because a
READ, by definition, still assigns a character as soon as it is
typed at the terminal, even before the carriage return is hit.
An attempt to use READs will generate an error message at
runtime.

The RESET statement opens a PRIMOS data file for reading. RESET is
usually used to open input data files; however, there are special
cases, such as the example above, where RESET is used to manipulate
input from the terminal. (RESET is fully discussed later in this
chapter.)

The word INPUT in the RESET statement is a standard Pascal textfile
identifier. -INTERACTIVE can only be used with the file INPUT. (For
more information on the special functions of the file types INPUT and
OQUTPUT in Prime Pascal, see Chapter 6 and the discussion on data input
files later in this chapter.)

How to Turn the —INTERACTIVE Switch Off: Since the —~-INTERACTIVE
feature is a switch, you can turn it on or off within a program. 1f
you want to turn the —INTERACTIVE feature off use the —-TTY feature in
another RESET statement, For example:

VAR
A, B, C, D : INTHGER;
BEGIN
RESET(INPUT, '-INTERACTIVE');
READL.N(A) ;
READLN(B) ;
RESET (INFUT, '-TTY');
READ(C) ;
READ (D)
END.
Use of -TTY lets you go back to inputting data from the terminal in the
"normal” way, without the use of Prime's erase and Kkill characters.
The -TTY switch must be used only with the standard file INFUT. (For
information on the other uses of -TTY, see the discussion on input data
files later in this chapter.)

Prime's —-INTERACTIVE extension differs from standard Pascal in the
following ways:

® There is no such feature in standard Pascal.

® READs are not allowed when using —INTERACTIVE,

10-5 Second Edition

19.1

19.1

DOCA303-191

e In standard Pascal, assignments are supposed to be done when a
character is typed at the terminal. With the —-INTERACTIVE
switch, assignments are done only after the carriage return is
hit.

e The erase and kill characters are given special meaning. In
standard Pascal, the carriage return is the only special
character.

INPUTTING AND OQUTPUTTING DATA WITH PRIMOS FILES

In Prime Pascal, data can be input from an input data file. Similarly,
the computer can output data to an output data file. These data files
are PRIMOS files, similar to the PRIMOS file that oontains your
program, These PRIMOS files can be placed in any directory that you
wish.

Upon execution of your program, the computer opens input and output
files, retrieves the data from the input file, performs operations
using that data, outputs results into an output file, and closes the
input and output files.

Note

If you do not use input and output files, data will be input
fram and output to the terminal by default.

CREATING AND USING INPUT DATA FILES

When you want to place data in a file to be read and operated on by a
program, you can create a new PRIMOS file and type your data into that
file, using Prime's line editor, ED, or Prime's screen editor, EMACS.
(See the New User's Guide to EDITOR and RUNOFF, the EMACS Primer, or
the EMACS Reference Guide.)

Once your data has been typed into the file, you would name the file,
as you would name any PRIMOS file,

Opening the Input File
In your program, you must tell the computer that the data your program

needs is located in a PRIMOS data file. This is called opening the
input file. All input files are opened with Pascal's RESET procedure.

Second Edition 10-6

INFUT AND OUTPUT

When INPUT is used with a data file, the name of the file must be given
as the second parameter in the RESET procedure, as shown above.

If a file is not specified in a READ or READLN statement, the standard
textfile INPUT is assumed, For example, the following have the same
effect, whether the standard textfile INPUT is a data file or the
terminal:

READ (INPUT, A):

READ(A) ;

For more information on INPUT, see Chapter 6.

Switching from Standard INPUT File to Terminal

If you open an input data file with the standard textfile INPUT, and
want to switch to inputting data from the terminal, use the —-TTY switch
in another RESET procedure. For example:

VAR
A, B : INTEGER;
INFILE : FILE OF CHAR;
BEGIN
RESET (INPUT, 'INDATA');
REACLN(INPUT, A);
RESET (INRUT, '-TTY');
READ(B)
END.

The value of A will be read fram an input file named INDATA, and the
value of B will be read from the terminal. The standard file INPUT is
the first parameter with -TTY. The -TTY switch must be enclosed in
single quotes.

The -TTY switch also works with REWRITE and the standard textfile
AJTRUT,

CREA T F

When you want to write data out to an output file, simply open the file
and name it using the REWRITE procedure.

The REWRITE Procedure
The format of the REWRITE procedure statement is:

REWRITE(file, 'filename');

10-11 Second Edition

18.3

DOC4303-191

The first parameter file is a Pascal file variable of a FILE type that
is associated with the output file. The second parameter, ‘'filename'
is the actual name of the PRIMOS file. This name must be enclosed in
single quotes. The inclusion of the second parameter is a Prime
extension.

You do not have to create a PRIMOS output file beforehand. The REWRITE
procedure will create a PRIMOS file for you upon execution. For
example:

PROGRAM Writeout;
VAR
A, B, C : INTEGER;
OUTFILE : FILE OF CHAR;
BEGIN
READLN(A) ;
READLN(B) ;
C = A+ B;
REWRITE (QUTFILE, 'GUTDATA');
WRITELN(C) ;
CLOSE (OUTFILE)
END.

QUTFILE is declared as FILEOF CHAR, A and B are read from the
terminal. REWRITE creates a PRIMOS file named OUTDATA in your
directory. The value of C is written out to the new file, and the file
is closed with CLLOSE. (The CLOSE procedure is discussed later in this
chapter.)

The second parameter 'filename' can also be a pathname. For example:

REWRITE (OUTFILE, 'PAUL>HOMEWORK>OUTDATA');
An output file called QUTDATA will be created in the subdirectory
HOMEWORK within the directory PAUL.
Note

Be sure to find out what your directory access rights are at
your installation.

Second Edition 10-12

INPUT AND OUTPUT

The use of BEOF, as well as RESET, GET, REWRITE, and PUT is illustrated
in the following example:

VAR
INFILE, OUTFILE : TEXT;
BEGIN
RESET (INFILE, 'INDATA');
REARITE (QUTFILE, 'OUTDATA');
WHILE NOT EOF(INFILE) DO
BEGIN
OUTFILE" := INFILE ;
PUT (OUTFILE) ;
GET (INFILE)
END;
CLOSE (INFILE) ; {The CQLOSE procedure is discussed at the end}
CLOSE (OUTFILE) {of this chapter.}
END.

The EOLN Function: The function ROLN tests for an end-of-line
condition in a textfile, It has the form:

EOLN(file)

This function is true if the buffer variable file™ corresponds to the
position of a line separator marking the end of the current line. The
line separator is the ASCII character LF (Line feed), which is a
carriage return. EOLN is applied to the standard textfile INPUT, if
the parameter file is omitted, whether INPUT is a data file or the
terminal.

Auxiliary Procedures

There are two auxiliary procedures that manipulate I/O in Prime
Pascal — PAGE and CLOSE. The CLOSE procedure is a Prime extension.

The PAGE Procedure: The form of the PAGE procedure is:

PAGE(file)

The PAGE procedure generates a skip to the top of a new page before the
next line of the output textfile file is written. If the single
parameter file is omitted, then this procedure is applied to data that
is written out to the standard textfile OUTPUT by default, whether
OUTPUT is a data file or the terminal.

10-23 Second Edition, Update 1

UPD4303~192

For example:

WRITELN('Page Test'):;
WRITELN('Page 1');
PAGE;

WRITELN('Page 2');

The CLOSE Procedure: All input and output data files must be
explicitly closed using the CLOSE procedure. Otherwise they will
remain open after the program terminates.

The form of the CLOSE procedure is:

CLOSE (file) ;
The CLOSE procedure is a Prime extension to standard Pascal.
For example:

VAR
Fyle: TEXT;

BEGIN
REWRITE (Fyle, 'FYLE');
WRITELN(Fyle, 'ABC'):
WRITELN(Fyle, 'DEF');
CLOSE (Fyle)

END.

Second Edition, Update 1 10-24

11

Standard Functions

A standard function, denoted by a standard identifier, is a built-in
function supplied by the Pascal language. There are four types of
standard functions — arithmetic, transfer, ordinal, and BOQLEAN.

ARTTHMETIC FUNCTIONS

ABS(X) Canputes the absolute value of X.

The type of X must

be INTEGER, LONGINTEGER, REAL, or LONGREAL. The type
of the result is the same as that of X.

NR(X) Canputes the square of X. X and the result will be of
the same data type: INTBEGER, LONGINTEGER, REAL, or

LONGREAL.,

Note

For the following arithmetic functions, the
INTEGER, LONGINTEGER, REAL, or LONGREAL. The
always REAL or LONGREAL.

SIN(X) Camputes the sine of X.
QoS (X) Computes the cosine of X.
111

type of X must be
type of result is

Second Edition

| 19.1

|19.l

19.1

19.1

19.1

19.1

DOC4303-191

EXP (X)

LN(X)

SQRT(X)

ARCTAN (X)

Computes the value of the base of natural logarithms
raised to the power X. This is exponential function

(e*).

Computes the mnatural logarithm of X. X must be
greater than zero.

Computes the non-negative square root of X. X must be
non-negative,

Computes the value, in radians, of the arctangent of
Xl

TRANSFER FUNCTIONS

TRUNC (X)

ROUND (X)

Truncates a real number into an integer. X must be of
type REAL or LONGREAL. The result is of type INTEGER
or LONGINTHEGER. If X is positive then the result is
the greatest integer less than or equal to X;
otherwise it is the least integer greater than or
equal to X. Examples:

TRUNC(3.7) yields 3

TRUNC(-3.7) yields -3
Rounds a real number to the nearest integer. X must
be of type REAL or LONGREAL. The result, which is of
type INTEGER or LONGINTEGER, is the value X rounded.
That is, if X is positive, ROUND(X) is equivalent to
TRUNC(X + 0.5); otherwise ROUND(X) is equivalent to
TRUNC(X - 0.5). Examples:

ROUND(3.7) yields 4

ROUND(~3.7) yields -4

ROUND(3,2) yields 3

ROUND(-3.,2) yields -3

Note

Be careful when the result of your TRUNC or ROUND function is
of an INTEGER type. You can assign an INTBGER value to a
LONGINTEGER variable without any possible errors, but when you
attempt to assign a LONGINTHEGER value to an INTHGER variable an
error is generated. This also applies to REAL and LONGREAL.
(See Chapter 6 for more information on LONGINTEGER and

LONGREAL.)

Second Edition

11-2

STANDARD FUNCTIONS

BOOLEAN FUNCTTIONS

ODD (X)

EOF (F)

EOLN(F)

X must be of type INTEGER or LONGINTHEGER. The result
is TRUE if X is odd and FALSE otherwise.

F is the file variable of an input file. This
function returns the wvalue TRUE if an end-of-file
condition exists for F and FALSE otherwise. It
applies to the standard textfile INPUT if the argument
F is omitted.

F is the file variable of an input textfile. |'This
function returns the value TRUE if the end of the
current line is reached and FALSE otherwise. It
applies to the standard textfile INPUT if F is
omitted.

11-5 Second Edition

19.1

EXTENSIONS AND RESTRICTIONS

$ and _ in identifiers Dollar signs and underscores are
(Chapter 4) allowed in identifiers in Prime
Pascal. However, the underscore

cannot be the first character.

The & and ! integer operators Prime's integer operators & and !

(Chapter 7) perform Boolean AND and OR
operations respectively on decimal
integer and longinteger numbers.

The OTHERWISE keyword Prime's OTHERWISE keyword can be

(Chapter 8) used at the bottom of a CASE
statement to execute an altermative
statement, or group of statements,
if no statement in the list of CASE
statements has been selected.

The EXTERN attribute When an externmal, separately com—

(Chapter 9) piled subprogram is declared in
Prime Pascal, it must be declared
with the word EXTERN at the end of
the declaration heading.

The {SE} compiler switch External Pascal subprograms can be

(Chapters 2 and 9) separately compiled by including the
{SE+} at the ©beginning of the
subprogram file. This switch can
also be used in the <calling
program's variable declarations so
that the variables can be referenced
by the external subprograms.

The {SA} compiler switch The {$A} switch controls the genera-

(Chapter 2) tion of code used to perform array
bounds checking at runtime.

The {SL} compiler switch The {SL} switch controls the

(Chapter 2) printing of source lines to the

listing file at compile time, if
~LISTING was specified.

The {$P} compiler switch The {$P} switch controls page breaks
(Chapter 2) or page "ejects" in the 1listing
file, 18.3

A-3 Second Edition

DOC4303-191

The second parameter 'filename'’
in RESET and REWRITE procedures
(Chapter 10)

The CLOSE.procedure
(Chapter 10)

The standard data files
INPUT and QUTPUT
(Chapters 6 and 10)

Second Edition

When input or output data files are
used, your RESET and REWRITE
procedures, which open the files,
should have as their second
parameter the name of the PRIMOS
file that has to be opened for
reading or writing. 'This filename
must be enclosed in single quotes.
The first parameter is a variable
declared as a FILE type, which is
associated with the second
parameter, 'filename’.

The QLOSE procedure must be used to
close an input or output data file
after it has been opened with RESET
or RFWRITE.

The standard data files INFUT and
QUTRUT, when used in a RESET or
REWRITE procedure without the second
parameter 'fil ename' will
automatically default to I/O to and
from the termimal. If a file is not
specified in a READ or READLN
statement, the standard textfile
INPUT is assumed, whether the
standard textfile INPUT is a file or
the terminal, ‘This also applies to
WRITE, WRITELN, and the standard
textfile QUTPUT.

Data Formats

VERVIEW

This appendix illustrates how values of Prime Pascal data types are
represented in storage. For more information on all of the data types,
see Chapter 6. In Prime Pascal, a word consists of 16 bits.

Prime Pascal supports the following data types:

Scalar Data Types

INTHGER

LONGINTEGER (Prime extension)
Subrange

REAL

LONGREAL, (Prime extension)
CHAR

BOOLEAN

Enumerated

Structured Data Types

ARRAY
REQORD
SET
FILE

B-1 Second Edition

|19.1

l19.1

DOC4303-191

Pointer Data Type

Pointer

INTEGER TYPE DATA

Integers are 16-bit (one word) twos-complement, fixed-point whole
binary numbers. 1Integers can hold values within the range -32768 to
4+32767. Bit 1 is the sign bit, which indicates whether the integer 1is
positive or negative. Bits 2-16 are the integer itself.

INTEGER

LONGINTHGER TYPE DATA

Longintegers are 32-bit (two-word) twos—-complement, fixed-point whole
binary numbers that hold values within the range -2147483648 to
+2147483647. Bit 1 is the sign bit, which indicates whether the
longinteger is positive or negative, and bits 2-32 are the longinteger
itself. The LONGINTEGER type is a Prime extension,

19.1

I
LONGINTEGER

Second Edition B-2

17

65

97

113

129

161

1025

1041

DATA FORMATS

3 4 5 6 7 8 16
reserved
pointer to position in buffer (3 words)
64
longinteger buffer size in bytes (2 words)
96
file umit number (1 word)
112
maximum number of objects in buffer (1 word)
128
longinteger size (in bytes) of object in buffer (2 words)
160
filename or pathname (64 words)
1024
total number of objects in buffer (1 word)
1040
buffer (128 word default for textfiles)
2048

FILE CONTROL BLOCK

B-7 Second Edition

DOC4303-191

POINTER TYPE DATA

Each value of a pointer type variable is the actual address of the data
to which each variable is pointing. Therefore the storage area for
each pointer variable contains an address.

A pointer is represented in storage by 48 bits (three words).
Specifically:

fault code

Bit 1 is the fault code, which determines if the desired data is
found or not found.

Bits 2 and 3 contain the ring number of the data that 1is being
pointed to.

Bit 4 is the extension bit, which indicates whether the pointer
contains a bit offset (three—word pointer) or doesn't contain a
bit offset (two-word pointer).

Bits 5-16 contain the segment number of the data.

Bits 17-32 contain the word number of the data within that
segment.

Bits 33-36 are the bit offset, which allows the pointer to point
to any bit in memory.

Bits 37-48 are reserved for future storage.

extension bit
213 4/ 5 16

0 ring /
\ segment #
#
17 32
word #
bit offset reserved
33 | | 13637 48
POINTER
Second Edition B-8

Interfacing Pascal to
Other LLanguages

OVERVIEW

This appendix offers guidelines for interfacing Pascal data types with
compatible data types of other Prime lanquages.

The key to interfacing compatible data types is storage representation.
For example, a Pascal INTEGER value and a PL/I Subset G Fixed Bin(15)
value are both stored as 16-bit (one-word) whole binmary numbers.
Therefore, an INTHGER value can be passed to a Fixed Bin(15) value and
vice versa. In order to interface Pascal to another language
successfully, you should be familiar with how Prime Pascal data types
are represented in storage. (See Appendix B.) You should also be
familiar with the other Prime language and how data types of that
language are represented in storage.

Table D-1 matches the compatibility of Prime Pascal data types with the
data types of Prime's PL/I Subset G, FORTRAN 77, FORTRAN IV, COBQL, and
BASIC/VM. The leftmost column lists the generic storage unit, which is
measured in bits, bytes, or words for each data type. Each storage
unit matches the data types listed to the right on the same row.
Following Table D-1, this appendix briefly discusses data type
compatibility and includes several program examples.

For more information on interfacing Pascal to other languages, as well

as calling Prime's standard subroutines, see the Subroutines Reference
Gujide.

D-1 Second Edition

Table D-1
Compatible Data Types

GENERIC FORTRAN FORTRAN PL/1
UNIT/PMA BASIC/VM | QOBOL v 77 PASCAL SUBSET G
1 bit — — —_ - — Bit

Bit(1)
16 bits INT QOMP INTEGER INTEGER*2 INTEGER Fixed Bin
(one word) INTEGER*2 LOGICAL*2 BOOLEAN Fixed

LOGICAL ENUMERATED Bin(15)
INTEGER
32 bits INT*4 -_ INTEGER*4 INTEGER*4 LONGINTEGER | Fixed
(two words) LOGICAL Bin(31)
LOGICAL*4
64 bits — _ —_ —_ — —-
(four words)

Float
32-bit REAL REAL REAL REAL Binary
Float single —_ REAL*4 REAL*4 Float

precision Bin(23)
64-bit
Float double REAL*8 —_ REAL*8 REAL*8 LONGREAL Float
precision Bin(47)
DISPLAY (5) CHAR
Byte string INT PIC A(n) INTEGER CHARACTER | ARRAY Char (n)
(Max. 32767) PIC 9(n) *n {(1..n] OF
PIC X(n) CHAR
Varying
character —_ _ _ —_ * Char(n)
string Varying
48-bits — — — — “type> Pointer
(three words)
256 bits — — —_— — SET Bit (256)
— Not available. * See Subroutines Reference Guide
Second Edition D-2

$and !
extension)

integer operators (Prime
7-7 r A-3

$ and _ in identifiers (Prime

extension) 4-8, A-3
-32I compiler option 2-13
-64V compiler option 2-13

A compiler switch (Prime
extension) 2-16, A-3

Abbreviations, compile option
2-13 to 2-15
ABS function 6-4, 11-1

Actual parameters 4-4, 9-1,

9-2

Allocating dynamic variables
6-32, 6-33

AND operator 7-6

ANSI standard 1-4, 2-12, 4-4,
6-8, C-1 to C-6

X-1

Index

ARCTAN function 6-6, 11-2

Arithmetic operators 7-2, 7-3

ARRAY OF CHAR 6-17 to 6-19

ARRAY OF CHRR, (Prime extension)
6-18, 6-19
Array storage 6-16, B-5

ARRAY storage format B-5

ARRAY type 6-14 to 6-20, B-5
Arrays:
external 6-16
multidimensional 6-19, 6-20,
B-5
ASCII character set 4-4, 6-8

to 6-10, C-1 to C-6

Assignment compatibility 8-2,
8-3
Assignment statement 8-2, 8-3

Auxiliary procedures:
CLOSE (Prime extension)
10-24, A4

Second Edition

DOC4303-191
PAGE 10-23, 10-24

BEGIN and END keywords
8_4 4 8_5

4—7'
-BIG and -NOBIG compiler options
2-8

Binary (object) file
2-5, 2-8, 3-1 to 3-7

2_1 r 2_4 r

-BINARY compiler option 2-8

Blanks 4-11, 4-12
Block:
declaration part
definition 4-2
description 5-3, 5-4
executable part 5-9 to 5-11
illustration 4-3

5-4 to 5-9

BOOLEAN operators 7-6
BOOLEAN storage format B-4
BOOLEAN type 6-8, B4

Boundary-spanning object code
9-5
Call, recursive 9-19 to 9-22

Calling subprograms:

extermal 9-16

functions 9-14

procedures 8-3, 8-4, 9-10,
9-11

Cardinality, data type 6-1

CASE and variant records 6-23
to 6-25
CASE statement 8-11 to 8-14

Changing compiler option
defaults 2-6

Changing erase and kill
characters 10-4

Second Edition X-2

CHAR storage format B-4

CHAR type 6-8 to 6-10, B-4

Character set (See ASCII
character set)

Character string constants
4-11, 6-9

Character strings 4-11, 6-17
to 6-19, D-5, D-6 .
CHR function 6-8 to 6-10, 11-3
CLOSE procedure (Prime
extension) 6-30, 10-7, 10-12,
10-24, A-4

Closing data files
10-12, 10-24, A-4

6-30, 10-7,

Code, object:
boundary-spanning 9-5
ordinmary 9-5

Collating sequence

6"8’ C_3 to

Command files 3-8

Command level, PRIMOS
2-3, 2—5' 3-2 to 3_8

2_2 r

Command line:
options 2-1, 2-2, 2-6 to 2-15
Pascal compiler 2-2
Comments 4-11, 4-12
Compatibility with other
languages 1-6, 9-1, 9-15 to
9-18, D-1 to D-8
Compile-time errors 2-1 to 2-4
Compiler switches:
A switch 2-16, A-3
E switch 2-9, 2-17, 6-16,
6-22, 9-16 to 9-18, A-3
L switch 2-16, A-3
overview 2-16, 4-12

[Compiler:

error messages 1-4, 2-1 to
2-4

filename conventions 2-4,
2-5, 3-2 to 3-8

invoking 2-2

option abbreviations 2-13 to
2-15

options 2-1, 2-2, 2-6 to 2-15

PASCAL command 2-2

SditChes 2-9' 2_16’ 2-17’
4-12, 6-16, 6-22, 9-16 to
9-18, A-3

Compiling programs 2-1 to 2-17
r Compound statement 8-4, 8-5

Conditional statements:
CASE 8-11 to 8-14

QONST declaration 5-6

Constants:

BOOLEAN 4-9, 6-8
”~ AR 4-11, 6-9
character string 4-11, 6-9
declared 5-6
enumerated 6-11, 6-12
INTEGER and LONGINTEGER 4-10,

6-4, 6-5

MAXINT 4-9, 6-3
NIL. 6-32, 6-33, 7-1
nueric 4-8, 4-10

' & REAL and LONGREAL 4-10, 6-6,
6-7
standard 4-9

subrange 6-13, 6-14

Control (nonprintable)
characters 6-8, 11-3, 11-4,
C"5, C_6

Control statements:
CASE 8-11 to 8-14
FOR 8-8, 8-9
GO 8-14, 8-15
IF 8-10, 8-11
nested 8-5, 8-7, 8-9 to 8-11
REPEAT 8-6
' & WHILE 8-7, 8-8

X-3

INDEX

Control-C end-of-file marker
10-22

Conventions, filename (See
Filename conventions)

QS function 6-6, 11-1
CPL files 3-8

Creating data files:
input 10-6 to 10-11
output 10-11 to 10-14

Creating dynamic variables
6-32, 6-33

Data file I/0 6-30, 10-6 to
10-24

Data files:
closing 6-30, 10-7, 10-12,
10-24, A-4
creating 10-6 to 10-14
opening 6-30, 10-6 to 10-14

Data format (See Storage
format)

Data type cardinality 6-1

Data types:

ARRAY 6-14 to 6-10, B-5

BOOLEAN 6-8, B4

CHAR 6-8 to 6-10, B4

enumerated 6-10 to 6-12, B-4

FILE 6-27 to 6-31, 10-6 to
10-24, B-6, B-7

illustration 6-2

INTEGER 6-3, 6-4, B-2

interfacing with other
languages D-1 to D-8

LONGINTEGER 6—4, 6_5' A_].,
B~2

LONGREAL, 6-7, A1, B-3

overview 6-1

pointer 6-31 to 6-33, B-8

REAI: 6-6, B-3

RECORD 6-20 to 6-25, B-5

SET 6-25 to 6-27, B-5

standard scalar 6-2 to 6-10

storage formats B-1 to B-8

structured 6-14 to 6-31

subrange 6-12 to 6-14, B-3

Second Edition

DOC4303-191

TEXT 6-29, 10-10
user—defined scalar
6-14

6-10 to
-DEBUG and —-NODEBUG compiler
options 2-8

Debugger utility
2-8, 2-14

Decimal notation
6-7, 10-21

4_10' 6_6,

Declarations:
CONST 5-6
description 5-3, 5-4
LABEL, 5-4, 5-5
order of (Prime extension)
5-3 r A-2
PROCEDURE and FUNCTION 5-9
TYPE 5-6, 5-7
VAR 5-7 to 5-9

Default field widths 10-20

Default options 2-6
Delimiters, comment 4-12
Designator, function 9-14

Destroying dynamic variables
6-32, 6-33

Directives:
EXTERN
FORWARD

4-9, 9-15, A-3
4-9, 9-15

DISPOSE procedure 6-32
DIV operator 6-4, 7-3

Documents related to Pascal
1_4 r 1_5

Dollar signs and underscores in
identifiers 4-8, A-3

Dynamic allocation procedures:

DISPOSE 6-32
NBEW 6-32

Second Edition X-4

Dynamic storage 6-32, B-8

Dynamic variables 6-31 to 6-33
E compiler switch (Prime
extension) 2-9, 2-17, 6-16,
6-22, 9-16 to 9-18, A-3

EDITOR
10-10

1-4, 1-5, 10-6, 10-8 to

Elements, Pascal langquage 4-1
to 4-12

EMACS editor 1-5, 10-6, 10-8
to 10-10

Empty record 6-25

Empty set 6-26

Empty statement 8-5

END and BEGIN keywords
8-4, 8-5

4—'7'
End of File (EOF) condition
10-22, 10-23

End of Line (EOLN) condition
10-23

Enumerated storage format B-4

Enumerated type 6-10 to 6-12,
B-4

EOF function 10-22, 11-5

EOLN function 10-23, 11-5

Erase and kill characters:
changing 10-4
overview 10-4
using on terminal input
to 10-6
with —-INTERACTIVE switch
to 10-6

10-4

10-4

Erasing terminal input 10-4 to

10-6

Error messages:

compile time 2-1 to 2-4

for $INCLUDE files 2-3, 2-4

for -INTERACTIVE switch 10-5
to 6-14, 6-19, 6-27, 11-2

for external subprograms 9-18

for identifiers 4-8, A-5

for keyword PACKED 6-14, A-5

for labels 5-5

for non-ANSI standard 2-12

for PACK and UNPACK 9-12, A-5

for parameters 9-4

for standard functions 6-12,
11-2

format of 2-2

in listing file 2-10

loading 3-3, 3-6

overview 1-4

rmtime 2'—11’ 3—3' 3_67 6—12’
10-5

severity codes 2-3

significance 2-3

suppressing of 2-8, 2-12

-ERRTTY and -NOERRTTY compiler
options 2-8

Executable (SEG) file 2-5, 3-2
to 3-8

Executable block part 5-9 to
5-11

Executable statements 5-9 to
5-11, 8-1 to 8-16

EXEQUTE (load subprocessor)
command 3-8

Executing programs 3-7, 3-8
EXP function 6-6, 11-2

-EXPLIST and -NOEXPLIST compiler
options 2-9

Exponents 4-10, 6-6, 6-7,
10-20, B-3

Expressions 7-1 to 7-8

X-5

INDEX

Extensions (See Prime
extensions)

EXTERN (Prime extension)
directive 9-15, A-3

-EXTERNAL: and -NOEXTERNAL
compiler options 2-9, 9-17

External arrays 6-16

External procedures and
functions (See Extermal
subprograms)

Extermal records 6-22

External subprograms:

calling 9-16

declaring 9-15, 9-16

EXTERN (Prime extension)
directive 9-15, 9-16, A-3

from libraries 9-19

overview 9-1, 9-15

written in other languages
9-18, D-1 to D-8

written in Pascal 9-16 to
9-18

External variables 9-17

Field widths 10-18 to 10-22
Fields, variant 6-23 to 6-25
File control block B-6, B-7
File 1/0 6-30, 10-6 to 10-24

FILE OF CHAR 6-28 to 6-31,
10-8 to 10-12

FILE OF CHAR, reading and
writing of 10-9, A-5

FILE OF REAL. 6-28, 6-29, 10-8,
10-9

File storage B-6, B-7

Second Edition

DOCA4303-191
FILE storage format B-6, B-7

FILE type 6-27 to 6-31, 10-6
to 10-24, B-5

File variables
10-6 to 10-24

6-27 to 6-31,

File~-handling functions:
EOF 10-22, 11-5
EOLN 10-23, 11-5

File-handling procedures:
CLOSE (Prime extension) 6-30,
10-7, 10-12, A4, 10-2
GET 10-15
PAGE 10-23, 10-24

PUT 10-18

READ 10-15 to 10-17
READLN 10-17

RESET 10-6 to 10-10
RENRITE 10-11 to 10-13
WRITE 10-18 to 10-21
WRITELN 10-22

Filename conventions:
overview 2-4

prefix 2-5, 3-4 to 3-7
suffix 2-5, 3-2 to 3-4, 3-7
table 3-7

Filename in RESET and REWRITE
(Prime extension) 10-6 to
10-14, A-4

Files, data (See Data files)

Files:
(See also Textfiles)

$INCLUDE 2-3, 2-4, 5-10,
5—11' A"2

closing 6-30, 10~7, 10-12,
10-23, A-4

of CHAR 6-28 to 6-31, 10-8 to
10-12

of INTEGER 6-28, 6-29, 10-8,
10-9

of REALL 6-28, 6-29, 10-8,
10-9

opening 6-30, 10-6 to 10-14

PRIMOS input/output 6-27 to
10-5 to 10-24

standard INPUT 4-9, 6-31,

Second Edition X-6

10-5, 10-10, 10~-11, 10-16,
10-17, A4, 10-22,
standard QUTPUT 4-9, 6-31,
10-13, 10-14, 10-18, 10-22,
10-23, A4
storage of data B-6, B-7
Fixed variant record part 6-23

FOR statement 8-8, 8-9

Formal parameters
9-3

4_4 r 9—2 r

Format, line 4-11
FORWARD directive 9-15

Forward procedures and functions
9-14, 9-15

-FRN and —-NOFRN compiler options
2-9

FUNCTION declaration 5-9,
9-13, 9-15

Function designator 9-14
Functions:

(See also Subprograms)
declarations 9-13

extermal 9-15 to 9-19
forward 9-14, 9-15
heading 9-13, 9-15

I/0 10-14 to 10-24
invoking 9-14

overview 9-1, 9-12
recursive 9-19 to 9-22
standard 4-9, 6-4 to 6-12,

9-14, 10-1, 10-15, 10-22,
10-23, 11-1 to 11-5

GET procedure 10-15
Global:

external variables 9-17
illustration 4-3

GOTO statement 5-5, 8-14, 8-15

Graphic (printable) characters
6_8 to 6—10, 11—3' 11—4’ C"S’
C-6

Heading:
external 9-15
function 9-13, 9-15
procedure 9-9, 9-15
program 5-1 to 5-3

I/0 at terminal
10-2 to 10-6

6_29 7 6"'30 4

1/0 procedures and functions:
CLOSE (Prime extension) 10-24
EOF 10-22, 11-5
EOLN 10-23, 11-5
GET 10-15
overview 10-1, 10-14
PAGE 10-23, 10-24
PUT 10-18
READ 10-15 to 10-17
READILN 10-17
RESET 10-6 to 10-10
REWRITE 10-11 to 10-13
WRITE 10-18 to 10-21
WRITELN 10-22

Identifier length (Prime
restriction) 4-7, A-5

Identifiers:
dollar signs and underscores in

(Prime extension) 4-8, A-3
standard 4-8, 4-9
user—-defined 4-8

IF statement 8-10, 8-11
IN operator 6-27, 7-4

$INCLUDE files 2-3, 2-4, 5-10,

Index, array 6-14, 6-15
INPUT and OUTPUT, use of 6-31,
10-11, 10-13, A-4
Input and output:
overview 10-1
procedures and functions
10-14 to 10-24
to and fram data files 6-30,
X-7

INDEX

10-6 to 10-24
to and from terminal
10-2 to 10-6

6_30 ’

-INPUT compiler option 2-9

INPUT, standard textfile
6-31, 10-5, 10-10, 10-11,
10-16, 10-17, 10-22, 10-23, A-4

4_9,

Integer (Prime extension)
operators 7-7, A-3

INTEGER storage format B-2

INTEGER type 6-3, 6-4, B-2

~INTERACTIVE switch (Prime
extension) 10-4 to 10-6, A-2,
B-6

Interfacing Pascal to other

languages:

ARRAY OF CHAR interface D-5

BOOLEAN interface D-3

CHAR interface D=5

compatibility table D-2

enumerated interface D-3

INTEGER interface D=3

LONGINTEGER interface D-4

LONGREAL, interface D5

overview 1-6, 9-1, 9-15 to
9-18, D-1, D-2

pointer interface D6

REAL, interface D4

REQORD interface D-7 to D-8

SET interface D-7

Internal representations
Storage format)

(See

Invoking external subprograms
9-16

Invoking functions 9-14

Invoking procedures 8-3, 8-4,

9-10, 9-11
Invoking the compiler 2-2

Keywords 4-7

Second Edition

DOCA303-191

Kill character (See Erase and
kill characters)

L compiler switch (Prime

extension) 2-16, A-3
LABEL declaration 5-4, 5-5
Language elements 4-1 to 4-12

Language interfaces 1-6, 9-1,
9-15 to 9-18, D-1 to D-8

Libraries:
loading 3-1 to 3-6
Prime system 3-1 to 3-6, 9-19

LIBRARY (load subprocessor)
command 3-2

Library, Pascal 3-1 to 3-6
Line format 4-11
-LISTING compiler option 2-10

Listing file (See Source
listing file)
IN function 6-6, 11-1

LOAD (load subprocessor) command
3-2

-LOAD (SEG option) 3-2
Load subprocessor commands :

EXECUTE 3-8
LIBRARY 3-2

LOAD 3-2
QUIT 3-2

LOAD utility 1-5, 2-5, 3-1 to
3-8

Loading programs:
overview 3-1, 3-2

with prefix method 3-4 to 3-6
with suffix method 3-3, 3-4
Loading subprograms 3-1, 3-3

to 3-6, 9-18

Second Edition X-8

Local:
external variables 9-17
recursive variables 9-19

LONGINTEGER storage format
(Prime extension) B-2

LONGINTEGER type (Prime
extension) 6-4, 6-5, A-1l, B-2

LONGREAL, storage format (Prime
extension) B-3

LONGREAL: type (Prime extension)
6_7' A"’l, B—2

-MAP and -NO_MAP compiler

options 2-10
MAXINT 4-9, 6-3
Messages:

end-of-compilation 2-2, 2-3
error (See Error messages)

MOD operator 6-4, 7-3
Multidimensiomal arrays 6-19,
6'—20’ B-S

Nested statements:
defined 8-5
FOR 8-9
IF 8-10, 8-11
WHILE 8-7

NEW procedure 6-32

NIL. 6-32, 6-33, 7-1

Non—-ANSI standard errors 2-12

Nonprintable (control)
characters 6-8, 11-3, 114,
c-5, C-6

NOT operator 7-6

Notation:
decimal

scientific
10-20, B3

4-10, 6-6, 6-7, 10-21
4"‘10] 6_6’ 6_7,

Null program 5-4
Numeric constants 4-8, 4-10

Object (binary) file
2-5, 2-8, 3-1 to 3-7

2_1 r 2—4 r

ODD function 11-5
—OFFSET and -NOOFFSET compiler
options 2-10

Opening data files:
input 6-30, 10-6 to 10-11
output 6-30, 10-11 to 10-14
RESET 10-6 to 10-10

Operands 7-1, 7-2

Operator precedence 7-7

Operators, arithmetic:
- 6—4' 6"6, 7_3
* 6-4, 66, 7-3
+ 6-4, 66, 7-3
/ 6-6, 7-3
DIV 6-4, 7-3
MDD 6-4, 7-3

Operators, BOOLEAN:
AND 7-6
NOT 7-6
OR 7-6

Operators, integer (Prime
extension) :
! 7-7
& 7-7

Operators, relational:
< 6-4, 6-8, 6-10, 6-12, 7-4
<= 6-4, 6-8, 6-10, 6-12,

6-27, 7-4

<> 6—4, 6-8’ 6—10’ 6—12’
6-27, 7-4

6-4, 6-8, 6-10, 6-12, 6-27,
7-4

6-4, 6-8, 6-10, 6-12, 7-4

6-4’ 6—8, 6—10, 6"12’
6-27, 7-4

Vv
]

=

INDEX

Operators, SET:
- 6-26, 7-5
* 6-26, 7-5
+ 6-26, 7-5

Operators:
arithmetic
BOOLEAN 7-6
defined 7-1
integer (Prime extension) 7-7
order of evaluation 7-8
precedence of 7-7
relatiomal 7-3, 7-4
SET 6-26, 6-27, 7-4, 7-5

7-2 4 7"3

-OPT1 compiler option 2-11

-OPT3 compiler option 2-11

—OPTIMIZE and -NOOPTIMIZE
compiler options 2-11

Optional program heading (Prime
extension) 5-1, A-2

Options, compiler:

abbreviations 2-13 to 2-15
-BIG and -NOBIG 2-8
-BINARY 2-8

commonly used 2-7

-DEBUG and —NODEBUG 2-8

defaults 2-6

-ERRTTY and -NOERRTTY 2-8

-EXPLIST and -NOEXPLIST 2-9

—EXTERNAL, and —-NOEXTERNAL
2-9, 9-17

-FRN and -NOFRN 2-9

-INPUT 2-9

-LISTING 2-10

-MAP and -NO_MAP 2-10

not commonly used 2-7

-OFFSET and -NOOFFSET 2-10

-0PT1 2-11

-OPT3 2-11

~OPTIMIZE and —-NOOPTIMIZE
2-11

~PRODUCTION and —NOPRODUCTION
2-11

-RANGE and -NORANGE 2-11

-SILENT and -NOSILENT 2-12

-SQURCE 2-12

—~STANDARD and —NOSTANDARD
2-12

—STATISTICS and -NOSTATISTICS

Second Edition

DOC4303~-191

2-12
-UPCASE 2-13
-XREF and -NOXREF 2-13
OR operator 7-6
ORD function 6-10, 6-12, 11-3

Order of declarations (Prime
extension) 5-3, A-2
Order of evaluation 7-8

Ordinal values
11-3, 11-4

6-8 to 6-12,

OTHERWISE (Prime extension)
clause 8-11, 8-14, 8-15, A-3

QUTPUT, standard textfile
6-31, 10-13, 10-14, 10-18,
10_22’ 10_23, A—4

4_9 r

P compiler switch (Prime
extension) 2-17, A-3

PACK and UNPACK procedures
(Prime restrictions) 9-12,
A-5
Packed arrays 6-14, 6-17, A-5
PACKED keyword (Prime
restriction) 6-14, 6-17, A5

Page breaks in listing file
2-17, A-3
PAGE procedure 10-23, 10-24

Parameters:
actual 4-4, 9-2
array variable
overview 4-4, 9-1, 9-2
procedures and functions passed
as 9-6 to 9-9

9-5

record variable 9-5

value 9-3

variable 9-3, 9-4
PASCAL command 2-2

Second Edition X-10

Pascal:
ANSI standard 1-4, 2-12, 4-4,
6"8' C—l to C—6
arithmetic operators
ASCII character set
to 6-10, C-1 to C-6
blanks 4-11, 4-12
BOOLEAN operators
character strings
to 6-19, D-5, D6
comments 4-11, 4-12
compiler 2-1 to 2-17
data storage formats
B-8
data types
expressions
identifiers
input and output
to 6-31
instruction books
integer operators
keywords 4-7
language elements 4-1 to 4-12
language interfaces D-1 to
D-8, 1-6, 9-1, 9~-15 to 9-18
library 3-1 to 3-6
line format 4-11
numeric constants
operands 7-1, 7-2
operator precedence
operators 7-2 to 7-8
parameters 9-2 to 9-9
Prime extensions 1-2, A-1 to
A-4
Prime Pascal 1-2
Prime restrictions 1-2, A5
procedures and functions 9-1
to 9-22
program structure
punctuation symbols
related documents
relational operators
separators 4-11
set operators 7-5
standard functions 4-9, 6-4
to 6-12, 9-14, 10-1, 10-15,
10-22, 10-23,
standard procedures 9-12,
10-1, 10-7, 10-11, 10-14 to
10-24
statements 8-1 to 8-16
storage requirements 6-17,
6'—22’ 6"32’ B-1 to B"8p D"'lp
D-2, 6-16

7—2' 7_3
4-4, 6-8

7-6
4-11, 6-17

B-1 to

6-1 to 6-34
7-1 to 7-8
4-7 to 4-9
10-1, 6-27

1-1
7-7

4-8

7-7, 7-8

5-1 to 5-15
4-5, 4-6

1-4, 1-5
7"3 [7—4

Pass-by-reference parameters
9_3 r 9_4

Pass-by-value parameters 9-3

PMA (See Prime Macro Assembler)

Pointer data type 6-31 to

Pointer storage format B-8

Precedence of operators 7-7

PRED function 6-10, 6-12, 11-4
Prefix:

executing file 3-7

filename conventions 2-5, 3-4
to 3-7
loading procedure 3-4 to 3-7

Prime extensions to standard

Pascal:

$ and _ in identifiers 4-8,
A=3
5-10, 5-11, A-2

A compiler switch 2-16, A-3

ARRAY OF (HAR enhancement
6-18, 6-19, A-2

CLOSE procedure
10-12, 10-23,

comment delimiters /* */ 4-11,

6-30, 10-7,

A-2

E compiler switch 2-9, 2-17,
6-16, 6-22,

EXTERN directive 9-15, A-3

Filename in RESET and
REWRITE 10-6 to, 10-24, A-4

~INTERACTIVE switch 10-4 to
10-6, A-2, B-6

L compiler switch 2-16, A-3

LONGINTEGER type 6-4, 6-5,
A-1

LONGREAL type 6-7, A-1l, B-3

optional program heading 5-1,
A-2

order of declarations 5-3,
A-2

OTHERWISE clause 8-11, 8-14,
8-15, A-3

P compiler switch 2-17, A-3

-TTY switch 10-5, 10-11,

X-11

INDEX

10-14, A-2
& and ! integer operators
7-7, A3
Prime Macro Assembler 1-6,
2-9, 9-18
Prime Pascal:
ASCII character set 6-8 to
6-10, C-1 to C-6
compiler 2-1 to 2-17
defined 1-2
extensions 1-2, A-1 to A-4
library 3-1 to 3-6, 9-19
related documents 1-4, 1-5
restrictions 1-2, A5

Prime restrictions to standard
Pascal:
FILE OF CHAR, reading/writing
of 10-9, A-5

identifier length 4-7, A-5

PACK procedure 9-12, A-5
PACKED keyword 6-14, 6-17,
A-4

UNPACK procedure 9-12, A-5

Prime:

debugging utility 1-5, 2-6 to
2-8, 2-14

documents related to Pascal
1-4, 1-5

filename conventions 2-4,
2-5, 3-2 to 3-8

high-level languages 1-4,

1-6, 9-1, 9-15 to 9-18, D-1
to D-8
input and output
10-24
libraries
SEG loading utility
to 3-8, 2-5
subroutines
text editors
10-8 to 10-10

10-1 to

3-1 to 3-6, 9-19
1-5, 3-1

1-5, 9-19
1"'4' 1—5, 10—6'

PRIMOS:

command level
3-2 to 3-8

data files 6-27 to 6-31,
10-1, 10-5 to 10-24, 9-16 to
9-18

erase and kill characters
10-4 to 10-6

2—2, 2—3, 2"5’

Second Edition

DOCA303-191

file variables 10-7, 10-8,
10-13
PASCAL, command 2-2, 9-17

SEG command 3-2

subroutines 1-5, 9-19

user file directories 6-27,
10-6 to 10-8, 10-12

Printable (graphic) characters
6—8 tO 6—10' 11_3] 11—4' C"S’
C-6

PROCEDURE declarations 5-9, 9-9,
9-10, 9-15

Procedure statement
9-10, 9-11

8-3, 8-4,

Procedures:

(See also Subprograms)

declarations 5-9, 9-9, 9-10

dynamic allocation 6-32

external 9-15 to 9-19

forward 9-14, 9-15

heading 9-9, 9-15

I/0 10-14 to 10-24

invoking 8-3, 8-4, 9-10, 9-11

overview 9-1, 9-9

recursive 9-19 to 9-22

standard 4-9, 6-32, 9-12,
10-1, 10-7, 10-11, 10-14 to
10-24

-PRODUCTION and -NOPRODUCTION
compiler options 2-11

Program definition 4-2

Program heading:
definition 4-2
description 5-1 to 5-3

Program structure:

declaration part 5-3 to 5-9
executable part 5-9 to 5-15
heading 5-~1 to 5-3

overview 5-1
Program unit definition 4-2

Program, null 5-4

Second Edition X-12

Punctuation symbols 4-5, 4-6

PUT procedure 10-18

QUIT (load subprocessor) command
3-2

~RANGE and -NORANGE compiler
options 2-11

READ procedure 10-15 to 10-17
Reading arrays 6-14 to 6-19
READLN procedure 10-17
REAL storage format B-3

REAL type 6-6, B-3

Record storage 6-22, B-5

REQORD storage format B-5

REQORD type 6-20 to 6-25, B-5
Records:
empty 6-25
external 6-22
using WITH 6-22, 6-23
variant 6-23 to 6-25

Recursive procedures and
functions 9-19 to 9-22

Relational operators 7-3, 7-4
REPEAT statement 8-6
Repetitive statements:
REPEAT 8-6
WHILE 8"7, 8"8
RESET procedure 10-6 to 10-10

Restrictions (See Prime

restrictions)
ROUND function 6-4, 11-2
RUNOFF utility 1-4, 1-5

Runtime errors 2-11, 3-3, 3-6,

6-12, 10-5

Scalar data types:
standard 6-2 to 6-10

user—defined 6-10 to 6-14
Scientific notation 4-10, 6-6,
6-7, 10-20, B-3
Scope, definition 4-4
SEG command 3-2
3-1 to 3-8
Separators 4-11

SET operators 6-26, 6-27, 7-4,

7-5
SET storage format B-5
SET type 6-25 to 6-27, B-5
Set, empty 6-26
Severity codes 2-3

~SILENT and -NOSILENT compiler

options 2-12
SIN function 6-6, 11-1
-SOURCE compiler option 2-12
Source listing file 2-1, 2-2,

2-4, 2-5, 2-10, 3-4 to 3-7

Source program file 2-1 to
2’6, 3—2' 3-4’ 3"6’ 3"’7
SOR function 6-4, 11-1
SORT function 6-6, 11-2

—STANDARD and —NOSTANDARD
compiler options 2-12

Standard constants 4-9

X-13

INDEX

Standard functions (See
Functions)

Standard identifiers 4-8, 4-9

Standard procedures (See
Procedures)

Standard scalar data types 6-2

to 6-10

Standard textfiles (See INPUT
and OUTPUT)

Statements, declaration (See
Declarations)

Statements, executable:
assignment 8-2, 8-3
compound 8-4, 8-5
control 8-5 to 8-15
empty 8-5
function designator
overview 8-1
procedure 8-3, 8-4
WITH 8-16

9-14

Statements, nested (See Nested

statements)
Static variables 6-31

-STATISTICS and —-NOSTATISTICS
compiler options 2-12

Storage format:
ARRAY B-5
CHAR B4
enumerated B-4
file control block
INTEGER B-2
LONGINTEGER (Prime extension)
B-2
LONGREAL, (Prime extension)
B-3
pointer
REAL. B-3
RECORD B-5
SET B-5
subrange

B—6 r B-7

B-8

B-3

Second Edition

DOC4303-191

Storage:
array capacity 6-16
compatibility D-1 to D-8
data formats B-1 to B-8
dynamic 6-32
illustrations B-1 to B-8
in other languages D-1
record capacity 6-22

Strings (See Character strings)

Structured data types
6-31

6-14 to

Subprograms, extermal (See
External subprograms)

Subprograms:
(See also Procedures and
functions)
defined 4-2, 9-1
external 9-15 to 9-19
forward 9-14, 9-15
from libraries 9-19
recursive 9-19 to 9-22
written in other languages
9_18' D“l tO D"8
Subrange storage format B-3
Subrange type
B-3

6-12 to 6-14,

Subroutines 1-5, 9-19

SUCC function
11-3, 11-4

6-10 to 6-12,

suffix:
executing file 3-7
filename conventions
to 3-4, 3-7
loading procedure

2-51 3—2
3-2 to 34

Suppressing error messages
2-12

2"'8 ’

Switches (Prime extension):
-INTERACTIVE 10-4 to 10-6,
A-2, B-6
-TTY 10-5, 10-11, 10-14, A2

Second Edition X-14

Switches, compiler (See
Compiler switches)

Terminal I/0
to 10-6

6-29, 6-30, 10-2

Text editors, Prime
10-6, 10-8 to 10-10

1—4 r 1_5 r

TEXT type 6-29, 10-10
Textbooks, Pascal instruction
1-1

Textfiles:
closing 6-30,
10-23, A4
defined 6-29,
opening 6-30, 10-6 to 10-14

standard INPUT 4-9, 6-31,
10-5, 10-10, 10-11, 10-16,
10-17, 10-22,

standard QUTRUT 4-9, 6-31,
10-13, 10-14, 10-18, 10-22,
10-23, A4

10-7, 10-12,

10-8

TRUNC function 6-4, 11-2

-TTY switch (Prime extension)
10-5, 10-11, 10-14, A-2

TYPE declaration 5-6, 5-7
Types (See Data types)

Unconditional GOIO statement
8-14, 8-15

Underscores and dollar signs in
identifiers 4-8, A-3

UNPACK and PACK procedures

(Prime restrictions) 9-12,
A-5

-UPCASE compiler option 2-13

User—-defined identifiers 4-8

User—defined scalar data types
6-10 to 6-14

	Title Page
	Update Instructions
	i
	ii
	iii
	v
	vi
	vii
	viii
	ix
	1-3
	1-4
	2-3
	2-4
	2-7
	2-8
	2-11
	2-12
	2-13
	2-14
	4-5
	4-6
	4-9
	4-10
	6-1
	6-2
	6-9
	6-10
	6-17
	6-18
	7-1
	7-2
	7-3
	7-4
	7-7
	7-8
	8-3
	8-4
	9-9
	9-10
	9-11
	9-12
	9-17
	9-18
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-11
	10-12
	10-23
	10-24
	11-1
	11-2
	11-5
	A-3
	A-4
	B-1
	B-2
	B-7
	B-8
	D-1
	D-2
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	X-14

